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Different Mechanisms of c-Jun NH2-terminal Kinase-1 (JNK1)
Activation by Ultraviolet-B Radiation and by Oxidative Stressors*

(Received for publication, April 7, 1998, and in revised form June 14, 1998)

Mihail S. Iordanov and Bruce E. Magun‡

From the Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon 97201

Irradiation of mammalian cells with ultraviolet-B ra-
diation (UV-B) triggers the activation of a group of
stress-activated protein kinases known as c-Jun NH2-
terminal kinases (JNKs). UV-B activates JNKs via UV-B-
induced ribotoxic stress. Because oxidative stress also
activates JNKs, we have addressed the question of
whether the ribotoxic and the oxidative stress responses
are mechanistically similar. The pro-oxidants sodium
arsenite, cadmium chloride, and hydrogen peroxide ac-
tivated JNK1 with slow kinetics, whereas UV-B potenti-
ated the activity of JNK1 rapidly. N-acetyl cysteine (a
scavenger of reactive oxygen intermediates) abolished
the ability of all oxidative stressors tested to activate
JNK1, but failed to affect the activation of JNK1 by UV-B
or by another ribotoxic stressor, the antibiotic anisomy-
cin. In contrast, emetine, an inhibitor of the ribotoxic
stress response, was unable to inhibit the activation of
JNK1 by oxidative stressors. Although UV-A and long
wavelength UV-B are the spectral components of the
ultraviolet solar radiation that cause significant oxida-
tive damage to macromolecules, the use of a filter to
eliminate the radiation output from wavelengths below
310 nm abolished the activation of JNK1 by UV. Our
results are consistent with the notion that UV-B and
oxidative stressors trigger the activation of JNK1
through different signal transduction pathways.

Both in cultured mammalian cells and in the in vivo mouse
skin experimental system, the nongermicidal intermediate
wavelength ultraviolet part of the solar radiation (UV-B,1 l 5
280–320 nm) elicits biological responses such as cytotoxicity,
mutagenicity, carcinogenicity, and gene activation. Similar to
the short wavelength ultraviolet radiation (UV-C, l 5 200–280
nm), UV-B produces oxygen-independent damage to DNA,
RNA, and proteins. Similar to the long wavelength ultraviolet
radiation (UV-A, l 5 320–400 nm), UV-B also induces oxida-
tive damage to diverse cellular substrates. Murine fibroblasts
exposed to UV-B generate superoxide anion radicals (O2

.),
which are, in turn, dismutated to hydrogen peroxide (H2O2) by

superoxide dismutases (1). Thus generated, H2O2 further par-
ticipates in the Fenton reaction (H2O2 1 Fe213 zOH 1 OH2 1
Fe31) to generate the highly reactive hydroxyl radical (zOH) (2).
Apart from fibroblast cultures, the Fenton reaction has also
been detected in UV-B-irradiated mouse skin (3). Hydroxyl
radicals contribute to cellular damage by inducing lipid peroxi-
dation. In addition to the generation of zOH, H2O2 can react
with hypochlorous acid (HOCl) to generate singlet oxygen
(1O2). Indeed, 1O2 has been detected in UV-B irradiated mam-
malian cells (4). Furthermore, a substantial component of the
oxygen-dependent damage to DNA (formation of the 7,8-dihy-
dro-8-oxo-29-deoxyguanosine lesion) in response to UV-B has
been attributed to the generation of 1O2 (5).

The cytoprotective, survival reaction of cells to UV-C and
UV-B involves the rapid activation of the pre-existing tran-
scription factor AP-1, a dimer composed of members of the
c-Fos and c-Jun families of gene products. AP-1 activation is
mediated by a profound (10–100-fold) increase in the activity of
a group of related serine/threonine protein kinases collectively
termed c-Jun NH2-terminal kinases (JNKs) (reviewed in Ref.
6). JNKs phosphorylate and activate c-Jun, as well as the
transcription factors TCF/Elk-1 and ATF-2 that positively reg-
ulate the expression of the c-fos and c-jun genes, respectively
(reviewed in Ref. 7). The mechanisms of UV-C- and UV-B-
induced activation of JNKs have been subjects of considerable
investigation and debate over the last few years (8–11).

We have recently discovered a novel signaling pathway to
JNK1 that is initiated in, or in close proximity to, the func-
tional center of actively translating eukaryotic ribosomes (12).
This center contains the 39-end of 28 S rRNA and its protein-
aceous environment and is responsible for aminoacyl-tRNA
binding, peptidyl transfer, and ribosome translocation. This
region of the 28 S rRNA is the target of the antibiotics aniso-
mycin and blasticidin S and of the enzymatic ribotoxins ricin A
chain and a-sarcin, all of which strongly activate JNK1 (see
Ref. 12, and a detailed list of references therein). The activation
of JNK1 by the foregoing agents was termed the ribotoxic
stress response and is characterized by the absolute require-
ment for the presence of actively translating ribosomes at the
moment of cellular encounter with the 28 S rRNA-acting anti-
biotic or ribotoxin. Cells whose ribosomes are not engaged in
translational elongation fail to activate JNK1 in response to
these agents. In contrast, the activation of JNK1 by nonribo-
toxic stressors, such as inflammatory cytokines, osmotic stress,
and some DNA-damaging drugs, is intact in cells containing
nontranslating ribosomes (12). Interestingly, both UV-C and
UV-B require the presence of active ribosomes to activate
JNK1; furthermore, nucleotide- and position-specific damage
to the 39-end of 28 S rRNA was detected in UV-C- or UV-B-
irradiated cells (10). We concluded, therefore, that both UV-C
and UV-B trigger the ribotoxic stress response that leads to the
activation of JNK1. Our previous work, however, has not ad-
dressed the possibility that the ribotoxic stress response trig-
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gered by UV-C- or UV-B may be mediated by UV-induced
oxidative damage (for instance to RNA or protein com-
ponents of ribosomes). Such a possibility is plausible because
the damage to the 28 S rRNA incurred in response to UV-C
involved guanosine-specific lesions (potentially 7,8-dihydro-8-
oxo-guanosines) (10). Indeed, oxidative stressors are potent
activators of JNK activity. Sodium arsenite, the carcinogenic
form of trivalent arsenic (As31), has been found to induce
elevated levels of zOH through depletion of cellular reduced
glutathione (GSH) (13). Arsenite interacts directly with the
sulfhydryl group of both GSH and proteins, leading to the
formation of mixed protein-As-GS complexes (14, 15). Several
groups have reported that arsenite is a potent activator of JNK
activity (16–19). H2O2, a precursor of zOH (see above), was
found to activate JNK as well (20–23). Cadmium chloride, an
agent that, similar to sodium arsenite, depletes the cellular
levels of reduced GSH (13), has also been found to activate JNK
(19, 24).

In this investigation we have employed Rat-1 fibroblasts (the
cells used initially to describe the ribotoxic stress response) to
address the question of whether UV-B, on the one hand, and
three oxidative stressors (sodium arsenite, cadmium chloride,
and H2O2), on the other hand, share common signal transduc-
tion pathways to induce the activation of JNK1. We present
several lines of evidence that suggest that UV-B does not acti-
vate JNK1 through oxidative damage. First, sodium arsenite,
cadmium chloride, and H2O2 activated JNK1 with relatively
slow kinetics, whereas UV-B potentiated JNK1 activity rap-
idly. Second, pretreatment of cells with N-acetyl cysteine
(NAC, a potent scavenger of H2O2, zOH, and HOCl (25, 26) and
a precursor for the biosynthesis of GSH (27–30)) at physiolog-
ical pH abolished the ability of all oxidative stressors tested to
activate JNK1, but failed to affect the activation of JNK1 by
UV-B or by another ribotoxic stressor, the antibiotic anisomy-
cin. Third, emetine, an immediate inhibitor of ribosomal trans-
location and of UV-B- and anisomycin-induced activation of
JNK1 (10, 12), was unable to inhibit the activation of JNK1 by
the oxidative stressors. Fourth, eliminating more than 90% of
the spectral output below 310 nm (i.e. the wavelengths that
produce more direct, oxygen-independent damage to macromol-
ecules than oxidative damage) abolished the activation of
JNK1 by UV. Taken together, these results strongly argue
that, although oxidative damage plays a role in the long-term
effects of UV-B, it does not participate in the immediate-early
cellular response that involves the activation of JNK.

EXPERIMENTAL PROCEDURES

Anisomycin, sodium arsenite, cadmium chloride, and N-acetyl cys-
teine were from Sigma. Recombinant mouse IL-1a was from Genzyme
(Cambridge, MA). H2O2 was from Fisher Chemicals (Fair Lawn, NJ).
The cell culture and all experimental techniques employed in this work
have been previously described in Iordanov et al. (12). Briefly, JNK1
activity was determined by a coupled immunoprecipitation/immuno-
complex kinase assay using an anti-JNK1 antibody (Santa Cruz Bio-
technology Inc., sc-474) to precipitate the active kinase and GST-Elk1
recombinant protein as a substrate for phosphorylation (12). The phos-
phorylated GST-Elk1 was quantified from dried gels using a Molecular
Dynamics Phosphorimager and IP Lab Gel software (12). The activation
of SEK1/MKK4 was determined in a Western blot procedure using an
antibody directed against SEK1/MKK4 protein phosphorylated at Thr-
223 (New England BioLabs Inc., Beverly, MA, 9151S). The antibody
was used following the instruction of the manufacturer (12). After
hybridization with the phospho-specific antibody, the same membrane
was stripped, and total SEK1/MKK4 protein was detected through
re-hybridization using the anti-SEK1/MKK4 antibody K-18 (Santa
Cruz Biotechnology Inc.). The UV-B source and the method of UV-B
irradiation of cells have been described in Iordanov et al. (10). The A-18
glass filter was from Eastman-Kodak.

For the NAC pretreatment of cells, cell culture medium was made to
contain 30 mM NAC freshly before use. The pH of the NAC-containing

medium was then adjusted with NaOH to the pH value of the medium
without NAC. Either NAC-free or NAC-containing medium (after equil-
ibrating in humidified incubator at 37 °C and 5% CO2) was then used to
exchange the old cell culture mediums 30 min before treatment with
UV-B or another agent.

RESULTS

Kinetics of JNK1 Activation by UV-B and by Oxidative Stres-
sors—In Rat-1 cells irradiated with UV-B, the activity of JNK1
was markedly elevated as early as 15 min after the irradiation
and remained elevated throughout the next 2 h, as determined
in immunocomplex kinase activity assays (12) (Fig. 1, compare
lanes 1–4 with lanes 9–12). This kinetics of activation resem-
bled that observed in anisomycin-treated cells (Fig. 1, compare
lanes 1–4 with lanes 25–28). In contrast, the activity of JNK1 in
cells treated with sodium arsenite was not substantially ele-
vated 15 min after the treatment and displayed a slow, graded,
increase during the 2 h postincubation period (Fig. 1, compare
lanes 1–4 with lanes 17–20). Similarly, cadmium chloride-
treated cells displayed a slow, graded, dose-dependent, in-
crease in JNK1 activity (Fig. 2B, lanes 1–8, and not shown).
The response of JNK1 in Rat-1 cells treated with H2O2 ap-
peared to be complex; activation of JNK1 was not observed in
cells treated with doses below 1 mM (not shown) as well as in
cells treated with 10 mM H2O2 (Fig. 2A, lanes 6–9). Potent
activation of JNK1 was observed only in cells treated with 1 mM

H2O2 and, in addition, reproducibly only at 4 h after the treat-
ment (Fig. 2B, lanes 2–5). These results demonstrate that three
oxidative stressors (sodium arsenite, cadmium chloride, and
H2O2) are slow activators of JNK1, whereas the ribotoxic stres-
sors UV-B and anisomycin are rapid JNK1 activators.

Differential Effect of NAC on the Activation of JNK1 by
Ribotoxic and by Oxidative Stressors—NAC exerts an antioxi-
dant role via its dual capability to act both as a potent direct
scavenger of H2O2, zOH, and HOCl (25, 26) and as a precursor

FIG. 1. Kinetics of JNK1 activation in response to treatment
with UV-B, sodium arsenite, anisomycin, or IL-1a and the effect
of NAC on JNK1 activity. For the experiment presented in this figure
and for all the experiments presented hereafter, confluent Rat-1 cells
were serum deprived for typically 24 h before treatment. The cells were
left untreated or were pretreated as indicated (1) with NAC (30 mM) at
physiological pH values for 30 min and then stimulated with UV-B
(1200 J/m2), sodium arsenite (200 mM), anisomycin (10 mg/ml), or IL-1a
(25 ng/ml). At the indicated times (minutes) post-treatment, the cells
were harvested, JNK1 was immunoprecipitated, and JNK1 activity was
determined in immunocomplex kinase assays using recombinant GST-
Elk1 fusion protein as a substrate for phosphorylation as described in
Iordanov et al. (12). All NAC pretreatments were performed after the
pH of the NAC-containing cell culture medium has been adjusted to
physiological values.
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for the biosynthesis of GSH (27–30). To investigate whether
UV-B-induced activation of JNK is dependent on reactive oxy-
gen intermediates, we employed pretreatment of Rat-1 cells
with NAC (30 mM) for 30 min before challenging the cells with
UV-B or other stimuli. Because NAC acidifies the cell culture
medium (not shown), we adjusted the pH of the medium con-
taining NAC to physiological values (pH ;8.0 at atmospheric
CO2 concentrations; decreases to pH ;7.0 at 5% CO2). Under
these conditions, NAC specifically abolished the ability of so-
dium arsenite (Fig. 1, compare lanes 17–20 with lanes 21–24),
cadmium chloride (Fig. 2B, compare lanes 1–8 with lanes
9–16), and H2O2 (Fig. 2A, lower panel) to activate JNK1. How-
ever, neither UV-B- nor anisomycin-induced JNK1 activities
were affected by NAC pretreatment (Fig. 1, compare lanes 9–12
with lanes 13–16 and lanes 25–28 with lanes 29–32). Further-
more, the activation of JNK1 in response to IL-1a was not
affected by NAC (Fig. 1, compare lanes 33–36 with lanes 37–
40). We considered the possibility that NAC might have failed
to inhibit rapid JNK activators (such as UV-B and anisomycin)
because of the insufficient time of pretreatment with NAC (30
min, see Fig. 1). Rat-1 cells were therefore pretreated with
NAC for 4 h and then challenged with UV-B for 15 min. Even
under these conditions NAC failed to inhibit the activation of
JNK1 by UV-B, whereas, in the same experiment, NAC com-
pletely inhibited cadmium chloride-induced JNK1 activity (Fig.
3A). Next, we considered the possibility that the failure of NAC
to inhibit UV-B-induced JNK1 activity might result from the
high (presumably, saturating) doses of radiation (1200 J/m2

UV-B). However, NAC also failed to inhibit JNK1 activities
induced by significantly lower does of UV-B radiation (150, 300,
or 600 J/m2; Fig. 3B). In fact, NAC slightly potentiated the
UV-B-induced activity of JNK1, especially at lower UV-B doses
(Fig. 3B). The ability of NAC to potentiate the activation of
JNK1 by UV-B, however, might be because of the slightly
elevated levels of JNK1 basal activity in the presence of NAC
(Fig. 3B, see 0 J/m2, and also see Figs. 2A and 3A, graphs).

Ribotoxic Stressors, Oxidative Stressors, and NAC Regulate
the Activity of the JNK1 Cascade at a Level Upstream of
MKK4/SEK1—We have recently reported that agents that
induce ribotoxic stress activate the JNK1 cascade through sig-
nal transduction pathways that are independent (downstream)
of cell surface cytokine receptors but are upstream of the dual
specificity protein kinase MKK4/SEK1 (also known as JNK
kinase-1, JNKK1) (10, 12). To investigate whether MKK4/
SEK1 is activated by oxidative stressors as well, we monitored
the phosphorylation of threonine 223 of this kinase, an event
indicative of MKK4/SEK1 activation by upstream kinases such
as MEKK1 (31, 32). Similar to the ribotoxic stressor UV-B (Fig.
4, lanes 5–7), both cadmium chloride and sodium arsenite in-
duced a clear pattern of MKK4/SEK1 phosphorylation (Fig. 4,
lanes 11–14, and not shown for sodium arsenite) as detected in
immunoblot assays using an antibody specific for MKK4/SEK1

FIG. 2. Kinetics and dose-dependence of JNK1 activation in
response to treatment with H2O2 and cadmium chloride and the
effect of NAC on JNK1 activity. A, top, cells were treated with the
indicated concentrations (1 mM or 10 mM) of H2O2 for the indicated
times (0.5–4 h). JNK1 activity was determined as in Fig. 1. For com-
parison, the cells were irradiated with UV-B (1200 J/m2), and JNK1
activity was determined 30 min later (lane 10). A, bottom, cells were
pretreated where indicated with NAC as in Fig. 1 and then stimulated
where indicated with 1 mM H2O2 for 4 h. JNK1 activity was determined
as in Fig. 1. Error bars, standard deviation of the mean value obtained
from experimental points in triplicates. B, cells were pretreated where
indicated with NAC as in Fig. 1 and then stimulated where indicated
with 1, 10, or 100 mM cadmium chloride for 2 or 4 h. JNK1 activity was
determined as in Fig. 1. IP, immunoprecipitate.

FIG. 3. Lack of effect of NAC pretreatment on UV-B-induced
JNK1 activity. A, cells were pretreated where indicated with NAC as
in Fig. 1 except that the UV-B stimulation (1200 J/m2) was performed
4 h after the NAC pretreatment. JNK1 activity was determined 15 min
after the irradiation. As positive control, the effect of NAC on the
activation of JNK1 by cadmium chloride was studied in parallel. Error
bars, standard deviation of the mean value obtained from experimental
points in triplicates. B, cells were left untreated (f) or were pretreated
with NAC as in Fig. 1 (●). Thirty min later, the cells were stimulated
with 0, 150, 300, 600, or 1200 J/m2 of UV-B, and JNK1 activity was
determined 30 min after the irradiation. Error bars, standard deviation
of the mean value obtained from experimental points in triplicates.
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protein phosphorylated at threonine 223. The kinetics of
MKK4/SEK1 phosphorylation by either UV-B or cadmium chlo-
ride correlated closely with the kinetics of JNK1 activation by
the same agents (compare Fig. 1, lanes 9–12, to Fig. 4, lanes
5–7, and Fig. 2B, lanes 1–8, to Fig. 4, lanes 11–14). In agree-
ment with the results obtained using JNK1, NAC was unable
to reduce the UV-B-induced MKK4/SEK1 phosphorylation
(Fig. 4, compare lanes 5–7 with lanes 8–10) but was very
efficient in inhibiting the phosphorylation of the kinase in-
duced by cadmium chloride and sodium arsenite (Fig. 4, com-
pare lanes 11–14 with lanes 15–18, and not shown for sodium
arsenite). We concluded, therefore, that the ribotoxic stress-
and the oxidative stress-induced signal transduction pathways
to JNK1 are separate, but converge at, or upstream of,
MKK4/SEK1.

Inability of Ribosomal Inactivation to Reduce the Responsive-
ness of JNK1 to Oxidative Stressors—We have previously dem-
onstrated that the most characteristic feature of the ribotoxic
stress-induced signaling to JNK1 is its absolute requirement
for ribosomes actively engaged in translational elongation to
elicit a signaling cascade to JNK1 (10, 12). Rat-1 cells, pre-
treated with emetine (and inhibitor of translational elonga-
tion), cannot activate JNK1 in response to ribotoxic stress, but
possess a full capacity to activate JNK1 in response to cyto-
kines, osmotic stress, and DNA-damaging agents (10, 12). The
possible effects of ribosomal inhibitors on the oxidative stress-
induced JNK1 activation have not, however, been investigated.
Fig. 5 demonstrates the ability of emetine pretreatment to
abolish the activation of JNK1 by UV-B. However, neither
sodium arsenite- nor cadmium chloride-induced activation of
JNK1 was inhibited by emetine pretreatment (Fig. 5). We
concluded, therefore, that oxidative damage-induced signal
transduction to JNK1 is ribosome-independent.

Failure of UV-B(D280–310 nm) to Activate JNK1—Both in
vitro and in living cells, the ratio of oxidative damage (e.g. the
7,8-dihydro-8-oxo-29-deoxyguanosine lesion, 8-oxodGuo) to di-
rect damage (e.g. the cyclobutyl pyrimidine dimers, CPD)
caused by UV increases with the wavelength. For instance, at
equal doses, the 8-oxodGuo/CPD ratio for UV-A (320–400 nm)-
irradiated HeLa cells was found to be approximately 1000-fold
higher than that for UV-B- (280–320 nm) or UV-C (200–280
nm)-irradiated HeLa cells (33). If UV-induced oxidative dam-
age is an important intermediate in the signal transduction
pathways that lead to the activation of JNK1, the action spec-
trum of UV (measured by JNK1 activation) should be shifted
toward wavelengths with high 8-oxodGuo/CPD ratios (i.e. UV-
A). Because the UV-B source employed in our work has a
substantial portion of UV-A spectral output (Fig. 6A), it became

possible to address this question experimentally. We observed
that the A-18 glass filter from Eastman-Kodak retains more
than 90% of the UV wavelengths shorter than 310 nm (Fig. 6A).
By appropriately adjusting the irradiation time, we were able
to deliver to cells equal doses of radiant energy containing
either 100% of the original 280–310 nm spectral output (irra-
diation without the A-18 filter) or less than 10% of the original
280–310 nm spectral output (irradiation through the A-18
filter). Fig. 6B demonstrates that the use of the A-18 filter to
eliminate more than 90% of the 280–310 nm spectral output
abolished the ability of UV to activate JNK1 (compare lanes
1–6 with lanes 7–11). Thus, the JNK1-activating spectral por-
tion of the UV source used belongs to the wavelengths below
310 nm that have lower 8-oxodGuo/CPD ratios than UV-A. This
finding is consistent with the previous results (Figs. 1–5) indi-
cating that UV-B activates JNK1 through mechanisms that do
not involve UV-induced oxidative damage.

DISCUSSION

Ultraviolet radiation and oxidative agents are relevant en-
vironmental hazards for eukaryotic organisms with cytotoxic,
carcinogenic, and tumor-promoting properties. Whereas the
biochemistry of reactive oxygen intermediates is relatively well
understood, the modes of biological action of UV are consider-
ably more complex, as they involve both oxygen-dependent and
oxygen-independent (direct) damage to biomolecules. Although
some of the biological activities of UV might be attributed to
UV-induced oxidative stress, the question of the role of oxida-
tive stress in the cellular transcriptional responses to UV (that
involve the activation of cytoplasmic tyrosine- and serine/thre-
onine-directed protein kinases) has not been extensively ad-
dressed. Recently, JNKs have emerged as important mediators
of the transcriptional stress responses in mammalian cells to
both UV and oxidative stressors. Because of their responsive-
ness to both UV and oxidative stressors, JNKs constitute bio-
logically relevant end points to investigate the dependence of
UV-induced signal transduction on UV-induced oxidative dam-

FIG. 4. Phosphorylation of MKK4/SEK1 in response to treat-
ment with UV-B or cadmium chloride and the effect of NAC on
MKK4/SEK1 phosphorylation. Cells were pretreated where indi-
cated (1) with NAC for 30 min and then treated, as indicated, with
UV-B (1200 J/m2) or cadmium chloride (100 mM). At the indicated times
after the treatments, the cells were lysed, and the phosphorylation
status of SEK1/MKK4 was assessed in immunoblot analysis using an
antibody directed against SEK1/MKK4 protein phosphorylated at thre-
onine residue 223 as described in Iordanov et al. (12). The (phospho-
Thr-223)MKK4/SEK1-specific signal (top) is indicated by an arrow. The
same membrane was stripped and rehybridized with an antibody rec-
ognizing total MKK4/SEK1 protein (bottom).

FIG. 5. Effect of emetine on UV-B-, sodium arsenite-, or cad-
mium chloride-induced JNK1 activity. Cells were pretreated,
where indicated, with emetine (100 mg/ml) for 1 min before treatment
with UV-B (1200 J/m2), sodium arsenite (200 mM), or cadmium chloride
(100 mM). JNK1 activity was determined 15 min after the UV-B irradi-
ation or 2 h after the addition of sodium arsenite or cadmium chloride.
Error bars, standard deviation of the mean value obtained from exper-
imental points in triplicates.
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age. Previously, we have been able to demonstrate that an
invariant requirement for the successful activation of JNK1 by
either UV-C or UV-B is the presence, at the moment of UV
irradiation, of ribosomes actively engaged in translational elon-
gation (10). This finding placed UV in the distinct group of
JNK1 activators that share the requirement for active ribo-
somes to activate JNK1 and that are collectively termed ribo-
toxic stressors (10, 12, 34). This group includes agents that
either bind to the functional center of 28 S rRNA (anisomycin,
blasticidin S, and gougerotin) or cause covalent damage to the
functional center of 28 S rRNA (ricin A chain, abrin A chain,
and a-sarcin). In contrast, multiple known activators of JNK1,
such as signaling cytokines and hyperosmolarity, do not re-
quire the presence of active ribosomes to activate JNK1 (10, 12,
34). Despite the identification of UV as a ribotoxic stressor and
of active ribosomes as essential mediators of the UV-induced
signal transduction to JNK1, the possibility could not be ruled
out that reactive oxygen intermediates, induced in response to
UV irradiation of cells, cause damage to ribosomal components
(RNA and/or proteins) thus triggering a ribosome-dependent
signaling to JNK1. In the work presented, we have addressed
this possibility experimentally by comparing the activation of
JNK1 by ribotoxic (UV-B, anisomycin) and by oxidative (sodi-
um arsenite, cadmium chloride, H2O2) stressors. The prepon-
derance of experimental evidence presented in this work
strongly supports a notion that reactive oxygen intermediates
produced in the irradiated cells do not play a role in the acti-

vation of JNK1 by ribotoxic stressors.
With regard to the involvement of active ribosomes in UV-

induced signal transduction, we have been able to demonstrate
that active ribosomes are not required for the activation by UV
of a related group of protein kinases, the extracellular signal-
regulated kinase (ERKs) (10). Therefore, UV irradiation of cells
generates at least two autonomous signaling cascades: one
oxygen-independent, but ribosome-dependent that leads to the
activation of JNKs; and another, ribosome-independent, that
leads to the activation of ERKs. Interestingly, this second UV-
stimulated signaling pathway seems to involve UV-induced
oxidative damage. Knebel et al. (35) have presented results
consistent with the notion that UV-C, UV-B, and UV-A cause
oxidative damage to essential sulfhydryl groups in the catalytic
pockets of protein phosphatases that dephosphorylate trans-
membranal receptor tyrosine kinases (such as the epidermal
growth factor receptor, EGF-R). Decreased phosphatase activ-
ity, combined with high intrinsic kinase activity of the receptor
tyrosine kinase, results in a net increase in the activity of the
signal transduction pathways downstream of the respective
receptor. Furthermore, Knebel et al. (35) present evidence that
the activation by UV of the extracellular signal-regulated ki-
nases (ERK) correlates with the UV-induced inhibition of
EGF-R dephosphorylation. It must be noted, however, that of
all the members of the MAP kinase superfamily (that also
includes the JNKs and the p38 MAP kinase families of ki-
nases), ERKs are kinases that are the weakest in their respon-
siveness to UV (10, 36). Taken together, our results and the
work of Knebel et al. contribute to an emerging picture of the
UV response through the MAP kinase superfamily of protein
kinases in which the UV-induced oxidative damage plays a role
in the activation of ERK family of kinases, but in which oxygen-
independent and ribosome-dependent mechanisms predomi-
nate in the activation by UV of the stress-activated protein
kinases of the JNK and p38 MAP kinase families.

Acknowledgments—We acknowledge the technical assistance of Olga
Ryabinina and Jean Pearson.

REFERENCES

1. Masaki, H., and Sakurai, H. (1997) J. Dermatol. Sci. 14, 207–216
2. Masaki, H., Atsumi, T., and Sakurai, H. (1995) Biochem. Biophys. Res.

Commun. 206, 474–479
3. Taira, J., Mimura, K., Yoneya, T., Hagi, A., Murakami, A., and Makino, K.

(1992) J. Biochem. (Tokyo) 111, 693–695
4. Dalle Carbonare, M., and Pathak, M. A. (1992) J. Photochem. Photobiol. B 14,

105–124
5. Zhang, X., Rosenstein, B. S., Wang, Y., Lebwohl, M., and Wei, H. (1997) Free

Radical Biol. Med. 23, 980–985
6. Ip, Y. T., and Davis, R. J. (1998) Curr. Opin. Cell Biol. 10, 205–219
7. Whitmarsh, A. J., and Davis, R. J. (1996) J. Mol. Med. 74, 589–607
8. Adler, V., Schaffer, A., Kim, J., Dolan, L., and Ronai, Z. (1995) J. Biol. Chem.

270, 26071–26077
9. Adler, V., Polotskaya, A., Kim, J., Dolan, L., Davis, R., Pincus, M., and Ronai,

Z. (1996) Carcinogenesis 17, 2073–2076
10. Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T. H., Pearson, J. A., and

Magun, B. E. (1998) J. Biol. Chem. 273, 15794–15803
11. Rosette, C., and Karin, M. (1996) Science 274, 1194–1197
12. Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T. H., Pearson, J. A., Chen,

S. L., and Magun, B. E. (1997) Mol. Cell. Biol. 17, 3373–3381
13. Applegate, L. A., Luscher, P., and Tyrrell, R. M. (1991) Cancer Res. 51,

974–978
14. Winski, S. L., and Carter, D. E. (1995) J. Toxicol. Environ. Health 46, 379–397
15. Jennette, K. W. (1981) Environ. Health Perspect. 40, 233–252
16. Cavigelli, M., Li, W. W., Lin, A., Su, B., Yoshioka, K., and Karin, M. (1996)

EMBO J. 15, 6269–6279
17. Liu, Y., Guyton, K. Z., Gorospe, M., Xu, Q., Lee, J. C., and Holbrook, N. J.

(1996) Free Radical Biol. Med. 21, 771–781
18. Lim, C. P., Jain, N., and Cao, X. (1998) Oncogene 16, 2915–2926
19. Elbirt, K. K., Whitmarsh, A. J., Davis, R. J., and Bonkovsky, H. L. (1998)

J. Biol. Chem. 273, 8922–8931
20. Dhar, V., Adler, V., Lehmann, A., and Ronai, Z. (1996) Cell Growth Differ. 7,

841–846
21. Lo, Y. Y. C., Wong, J. M. S., and Cruz, T. F. (1996) J. Biol. Chem. 271,

15703–15707
22. Tournier, C., Thomas, G., Pierre, J., Jacquemin, C., Pierre, M., and Saunier, B.

(1997) Eur. J. Biochem. 244, 587–595
23. Wang, X., Martindale, J. L., Liu, Y., and Holbrook, N. J. (1998) Biochem. J.

333, 291–300

FIG. 6. Elimination of the wavelengths below 310 nm and its
effect on UV-B-induced JNK1 activity. A, spectral characteristics of
the UV radiation employed in this work. Dashed line and dotted area,
spectral output of the UV source (as provided by the manufacturer,
Fotodyne Inc., in arbitrary units on a linear scale); black area, absorb-
ance of the plastic bottom of the tissue culture dish through which the
cells were irradiated (left ordinate, linear scale). Note that the plastic
efficiently blocks by $90% the transmission of wavelengths below
;285–290 nm (right ordinate, inverted logarithmic scale). Shaded area,
absorbance of the A-18 glass filter (left ordinate). Note that the filter
blocks by $90% the transmission of wavelengths below 310 nm (right
ordinate). B, cells were irradiated with the indicated doses of UV-B in
the absence, or in the presence, where indicated, of the A-18 glass filter.
In the presence of the filter, approximately 10 times longer irradiation
times were required to achieve equal doses of radiant energy. Thirty
min after the end of the irradiation, cells were harvested and JNK1
activity was determined.

Activation of JNK1 by UV-B and Oxidative Stressors 25805

 by guest on O
ctober 14, 2016

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


24. Matsuoka, M., and Igisu, H. (1998) Biochem. Biophys. Res. Commun. 251,
527–532

25. Gillissen, A., Scharling, B., Jaworska, M., Bartling, A., Rasche, K., and Schultze-
Werninghaus, G. (1997) Res. Exp. Med. (Berlin) 196, 389–398

26. Aruoma, O. I., Halliwell, B., Hoey, B. M., and Butler, J. (1989) Free Radical
Biol. Med. 6, 593–597

27. Miners, J. O., Drew, R., and Birkett, D. J. (1984) Biochem. Pharmacol. 33,
2995–3000

28. Shattuck, K. E., Rassin, D. K., and Grinnell, C. D. (1998) J. Parenter. Enteral
Nutr. 22, 228–233

29. Moldeus, P., Cotgreave, I. A., and Berggren, M. (1986) Respiration 1, 31–42
30. Sala, R., Moriggi, E., Corvasce, G., and Morelli, D. (1993) Eur. Respir. J. 6,

440–446
31. Derijard, B., Raingeaud, J., Barrett, T., Wu, I. H., Han, J., Ulevitch, R. J., and

Davis, R. J. (1995) Science 267, 682–685
32. Yan, M., Dai, T., Deak, J. C., Kyriakis, J. M., Zon, L. I., Woodgett, J. R., and

Templeton, D. J. (1994) Nature 372, 798–800
33. Zhang, X., Rosenstein, B. S., Wang, Y., Lebwohl, M., Mitchell, D. M., and Wei,

H. (1997) Photochem. Photobiol. 65, 119–124
34. Iordanov, M. S., and Magun, B. E. (1998) J. Biol. Chem. 273, 3528–3534
35. Knebel, A., Rahmsdorf, H. J., Ullrich, A., and Herrlich, P. (1996) EMBO J. 15,

5314–5325
36. Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M., and

Davis, R. J. (1994) Cell 76, 1025–1037

Activation of JNK1 by UV-B and Oxidative Stressors25806

 by guest on O
ctober 14, 2016

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/

	Concordia University - Portland
	CU Commons
	9-1999

	Different Mechanisms of c-Jun NH2-terminal Kinase-1 (JNK1) Activation by Ultraviolet-B Radiation and by Oxidative Stressors
	Mihail S. Iordanov
	Bruce E. Magun
	Recommended Citation


	bc369925801p

