20 research outputs found

    Shapes and Rise Velocities of Single Bubbles in a Confined Annular Channel: Experiments and Numerical Simulations

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-29, pub-electronic 2021-12-02Publication status: PublishedShapes and rise velocities of single air bubbles rising through stagnant water confined inside an annular channel were investigated by means of experiments and numerical simulations. Fast video imaging and image processing were used for the experiments, whilst the numerical simulations were carried out using the volume of fluid method and the open-source package OpenFOAM. The confinement of the annular channel did not affect the qualitative behavior of the bubbles, which exhibited a wobbling rise dynamic similar to that observed in bubbles rising through unconfined liquids. The effect of the confinement on the shape and rise velocity was evident; the bubbles were less deformed and rose slower in comparison with bubbles rising through unconfined liquids. The present data and numerical simulations, as well as the data collected from the literature for use here, indicate that the size, shape, and rise velocity of single bubbles are closely linked together, and prediction methods that fail to recognize this perform poorly. This study and the limited evidence documented in the literature indicate that the confinement effects observed in non-circular channels of complex shape are more complicated than those observed with circular tubes, and much less well understood

    Predicting initial microlayer thickness in nucleate boiling using Landau–Levich theory

    Get PDF
    A phenomenological model is proposed to estimate the initial thickness of the liquid microlayer forming beneath a vapour bubble growing on a solid surface upon nucleate boiling. The model employs an analogy between the microlayer formation and the classic plate withdrawal problem. It calculates the microlayer thickness by considering it as a Landau–Levich film, where the thickness is a function of the meniscus speed and radius of curvature. Given the nearly hemispherical shape of the bubble during the early growth stage when the microlayer is first deposited, we assume that the meniscus speed can be approximated by the bubble expansion rate, and estimate the meniscus curvature using the Rayleigh equations. Unlike previous theories that assume that the bubble radius growth is proportional to the square root of time, the proposed model does not rely on any specific law of growth for vapour bubbles. The model is validated for predicting the microlayer thickness in water and ethanol, showing good agreement with experimental measurements and empirical correlations. Subsequent analyses of the microlayer interface profile address inconsistent reports – some described a wedge-like shape, whereas others reported a slight outward curvature with decreasing thickness in the outer region. This discrepancy is attributed to a reduction in the expansion rate of the microlayer’s outer edge, particularly when the bubble reaches its maximum width. Our model provides insights into microlayer dynamics, essential to boiling heat transfer, as the evaporative heat flux through the microlayer is very sensitive to its initial thickness

    Understanding Inconsistencies in Thermohydraulic Characteristics Between Experimental and Numerical Data for Di Water Flow Through a Rectangular Microchannel

    Get PDF
    Facing discrepancies between numerical simulation, experimental measurement and theory is common in studies of fluid flow and heat transfer in microchannels. The cause of these discrepancies is often linked to the transition from the macro-scale to the micro-scale, where the flow dynamics might be expected to deviate due to possible change in dominant forces. In this work, an attempt is made to achieve agreement between experiment, numerical simulation and theoretical description within the usual framework of laminar flow theory. For this purpose, the pressure drop, friction factor, and Poiseuille number under isothermal conditions and the temperature profile, heat transfer coefficient, Nusselt number, and thermal performance index under diabatic conditions (heating power of 10 W) in a heat sink with a stainless steel microchannel with a hydraulic diameter of 850 µm were investigated numerically and experimentally for mass flow rates between 1 and 68 g/min. The source of inconsistencies in pressure drop characteristics is found to be linked to the geometrical details of the utilized microchannel, e.g. the design of inlet/outlet manifolds, the artefacts of manufacturing technique and other features of the experimental test rig. For the heat transfer characteristics, it is identified, that an appropriate estimation of the outer boundary condition for the numerical simulation remains the crucial challenge to obtain a reasonable agreement. The manuscript presents a detailed overview on how to consider these details to mitigate the discrepancies and to establish a handshake between experiments, numerical simulations and theory

    Coupled atomistic–continuum simulations of nucleate boiling

    Get PDF
    Boiling is a striking example of a multiscale process, where the dynamics of bubbles is governed by the interplay between the molecular interactions responsible for nucleation, and the macroscale hydrodynamic and thermal boundary layers. A complete description of this phenomenon requires coupling molecular- and continuum-scale fluid mechanics into a single modelling framework. This article presents a hybrid atomistic–continuum computational model for coupled simulations of nucleate boiling. A domain decomposition coupling method is utilised, where the near-wall region is solved by a Molecular Dynamics description, which handles nucleation and the moving contact lines, while the bulk flow region is solved by a continuum-scale description based on the Navier–Stokes equations. The latter employs a Volume Of Fluid method to track the evolution of the liquid–vapour interface and the interphase mass transfer is computed via the Hertz–Knudsen–Schrage relationship. Boiling of a Lennard-Jones fluid over a heated wall is simulated and the hybrid solution is validated against a fully molecular solution. The results obtained with the coupled framework in terms of time-dependent bubble volume, phase-change rates, bubble dynamics and evolution of the temperature field agree quantitatively with those achieved by a MD-only simulation. The coupled framework reproduces the bubble growth rate over time from nucleation until a bubble diameter of about 70 nm, demonstrating the accuracy and robustness of the coupling architecture. This also demonstrates that the fluid dynamics description based on the Navier–Stokes equations is capable of correctly capturing the main heat and mass transfer mechanisms responsible for bubble growth at the nanoscale. The proposed modelling framework paves the way towards multiscale simulations of boiling, where the necessary molecular-level physics is retained in a computational fluid dynamics solver

    Modellazione CFD di flussi bifase in ebollizione nel regime di moto a tappi con una tecnica di tipo interface capturing

    Get PDF
    The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.Questa tesi si è posta l'obiettivo di migliorare il codice commerciale CFD Ansys Fluent, per ottenere un solutore in grado di compiere simulazioni accurate di flussi in ebollizione nel regime slug flow. Un codice numerico affidabile permette una miglior comprensione della dinamica della bolla causata dall'evaporazione, rendendo possibile la stima dello scambio termico alla parete. Per limitare il costo computazionale delle simulazioni, il problema è modellato con una formulazione assialsimmetrica. Le fasi liquido e vapore sono incomprimibili ed in moto laminare. Attraverso un approccio di tipo single fluid, le equazioni che governano il moto sono scritte come per un flusso a fase singola, tuttavia discontinuità ed effetti di interfaccia vanno introdotti e discretizzati propriamente. Fluent dispone di una tecnica di tipo Volume-of-Fluid per l'avvezione dell'interfaccia e per mappare le discontinue proprietà del fluido su tutto il dominio. Nello slug flow gli effetti di interfaccia sono dominanti, di conseguenza l'accuratezza con cui essi sono calcolati è fondamentale per la veridicità del solutore. A tale scopo, sono state introdotte nel codice numerico delle funzioni esterne, sviluppate appositamente per il calcolo della tensione superficiale e dello scambio di massa ed energia all'interfaccia come conseguenza dell'evaporazione. Le migliori prestazioni del codice modificato rispetto a quello originale sono dimostrate attraverso numerosi casi test. Per provare la validità del nuovo codice numerico nella riproduzione di reali configurazioni di flusso, sono stati simulati diversi flussi adiabatici ed il confronto con i risultati sperimentali è molto positivo. La simulazione dell'evaporazione di una bolla singola evidenzia che la convezione transitoria nel liquido, successivamente al passaggio della bolla, ha un effetto dominante sul coefficiente di scambio termico globale. La simulazione di bolle multiple che evaporano in sequenza mostra che la loro influenza reciproca migliora notevolmente il coefficiente di scambio, fino a due volte il valore a fase singola

    Computational Study of Saturated Flow Boiling Within a Microchannel in the Slug Flow Regime

    No full text
    This paper presents a fundamental study of the flow dynamics and heat transfer induced by a slug flow under saturated flow boiling in a circular microchannel. Numerical simulations are carried out by utilizing the commercial CFD solver ANSYS FLUENT v. 14.5, with its built-in volume of fluid (VOF) method to advect the interface, which was improved here by implementing self-developed functions to model the phase change and the surface tension force. A continuous stream of bubbles is generated (by additional user-defined functions) by patching vapor bubbles at the channel upstream with a constant generation frequency. This modeling framework can capture the essential features of heat transfer in slug flows for a continuous stream of bubbles which are here investigated in detail, e.g., the mutual influence among the growing bubbles, the fluid mechanics in the liquid slug trapped between two consecutive bubbles, the effect of bubble acceleration on the thickness of the thin liquid film trapped against the channel wall and on other bubbles, and the transient growth of the heat transfer coefficient and then its periodic variation at the terminal steady-periodic regime, which is reached after the transit of a few bubble-liquid slug pairs. Furthermore, the results for a continuous stream of bubbles are found to be quite different than that of a single bubble, emphasizing the importance of modeling multiple bubbles to study this process. Finally, the outcomes of this analysis are utilized to advance a theoretical model for heat transfer in microchannel slug flow that best reproduces the present simulation data
    corecore