191 research outputs found

    Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    Full text link
    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming `tungsten bronzes'. Similar optical effects are observed upon removing oxygen from WO_3, although the electronic properties are slightly different. Here we present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behaviour of the bronzes are relatively consistent. NaWO_3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. Next, this was extended to a study of fractional doping in the Na_xWO_3 system (0 < x < 1). A linear variation in cell parameter, and a systematic change in the position of the Fermi level up into the valence band was observed with increasing x. In the underdoped WO_3-x system however, the Fermi level undergoes a sudden jump into the conduction band at around x = 0.2. Lastly, three compounds of a layered WO_4&#215;a,wdiaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO_3 compound which relate well to experimental UV-visible spectroscopy results.Comment: 12 pages, 16 figure

    Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol

    Full text link
    [EN] A series of W-V-O catalysts with different m-WO3 and h-WO3 phase contents were hydrothermally synthesized by employing different tungsten, vanadium, and ammonium precursors and characterized by powder XRD, N-2 adsorption, SEM, X-ray energy-dispersive spectroscopy, thermogravimetric analysis, Raman and FTIR spectroscopy, NH3 temperature programmed desorption, H-2 temperature-programmed reduction, and XPS. Finally, the acid/redox properties were analyzed by using aerobic transformation of methanol as a characterization reaction. A correlation between phase composition as well as acid and redox properties was observed, which were correlated to the catalytic performance of the title materials in a one-pot oxydehydration reaction of glycerol. The hexagonal tungsten bronze (h-WO3) phase shows a significantly higher concentration of acid sites than monoclinic m-WO3, so that the acid properties of W-V-O oxides are directly related to the presence of h-WO3 crystals. The presence of a higher concentration of acid sites in V-containing h-WO3 crystals is a key factor to achieve high selectivity to both acrolein and acrylic acid during one-pot glycerol oxydehydration. Also, V sites in h-WO3 show higher selectivity in the consecutive reaction (partial oxidation of acrolein to acrylic acid), while V sites in the m-WO3 phase fundamentally lead to the formation of carbon oxides.The authors acknowledge the DGICYT in Spain, CTQ2015-68951-C3-1-R and CTQ2015-68951-C3-3-R. Authors from ITQ also thank Project SEV-2016-0683 for financial support. D. D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). The research group of Prof. Fabrizio Cavani (University of Bologna, Italy)and Consorzio INSTM (Firenze) are gratefully acknowledged for a PhD grant to A. C. Authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support.Delgado-Muñoz, D.; Chieregato, A.; Soriano Rodríguez, MD.; Rodríguez-Aguado, E.; Ruiz-Rodríguez, L.; Rodriguez-Castellon, E.; López Nieto, JM. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry. 10:1204-1211. https://doi.org/10.1002/ejic.201800059S1204121110GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607Long, H., Zeng, W., & Zhang, H. (2015). Synthesis of WO3 and its gas sensing: a review. Journal of Materials Science: Materials in Electronics, 26(7), 4698-4707. doi:10.1007/s10854-015-2896-4Haldolaarachchige, N., Gibson, Q., Krizan, J., & Cava, R. J. (2014). Superconducting properties of theKxWO3tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family. Physical Review B, 89(10). doi:10.1103/physrevb.89.104520Huang, Z.-F., Song, J., Pan, L., Zhang, X., Wang, L., & Zou, J.-J. (2015). Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 27(36), 5309-5327. doi:10.1002/adma.201501217Maiyalagan, T., & Viswanathan, B. (2008). Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. Journal of Power Sources, 175(2), 789-793. doi:10.1016/j.jpowsour.2007.09.106Weber, M. F., Bevolo, A. J., Shanks, H. R., & Danielson, G. C. (1981). Electrocatalytic Activity of Cubic Sodium Tungsten Bronze: I. Effects of Platinum Doping, Anodization, and Platinum Pre‐Electrolysis of the Electrolyte. Journal of The Electrochemical Society, 128(5), 996-1003. doi:10.1149/1.2127588Wickman, B., Wesselmark, M., Lagergren, C., & Lindbergh, G. (2011). Tungsten oxide in polymer electrolyte fuel cell electrodes—A thin-film model electrode study. Electrochimica Acta, 56(25), 9496-9503. doi:10.1016/j.electacta.2011.08.046Dey, K. R., Debnath, T., Rüscher, C. H., Sundberg, M., & Hussain, A. (2010). Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1−yO3. Journal of Materials Science, 46(5), 1388-1395. doi:10.1007/s10853-010-4932-3Zhang, Z., Liu, J., Gu, J., Su, L., & Cheng, L. (2014). An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci., 7(8), 2535-2558. doi:10.1039/c3ee43886dMurawska, M., Cox, J. A., & Miecznikowski, K. (2014). PtIr–WO3 nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethanol. Journal of Solid State Electrochemistry, 18(11), 3003-3010. doi:10.1007/s10008-014-2493-0Li, X. P., Xiang, X. D., Yang, H. Y., Wang, X. J., Tan, C. L., & Li, W. S. (2013). Hydrogen Tungsten Bronze-Supported Platinum as Electrocatalyst for Methanol Oxidation. Fuel Cells, 13(2), 314-318. doi:10.1002/fuce.201000131Kulesza, P. J., Pieta, I. S., Rutkowska, I. A., Wadas, A., Marks, D., Klak, K., … Cox, J. A. (2013). Electrocatalytic oxidation of small organic molecules in acid medium: Enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochimica Acta, 110, 474-483. doi:10.1016/j.electacta.2013.06.052BROYDE, B. (1968). Tungsten bronze fuel cell catalysts. Journal of Catalysis, 10(1), 13-18. doi:10.1016/0021-9517(68)90217-0Li, G., Guo, C., Yan, M., & Liu, S. (2016). Cs x WO 3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 183, 142-148. doi:10.1016/j.apcatb.2015.10.039Xi, Y., Chen, Z., Gan Wei Kiat, V., Huang, L., & Cheng, H. (2015). On the mechanism of catalytic hydrogenation of thiophene on hydrogen tungsten bronze. Physical Chemistry Chemical Physics, 17(15), 9698-9705. doi:10.1039/c4cp05298fLiu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657wSong, J., Huang, Z.-F., Pan, L., Zou, J.-J., Zhang, X., & Wang, L. (2015). Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis, 5(11), 6594-6599. doi:10.1021/acscatal.5b01522Okumura, K., Ishida, S., Takahata, R., & Katada, N. (2013). Structure and catalysis of layered Nb–W oxide constructed by the self-assembly of nanofibers. Catalysis Today, 204, 197-203. doi:10.1016/j.cattod.2012.06.034Yue, C., Zhu, X., Rigutto, M., & Hensen, E. (2015). Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Applied Catalysis B: Environmental, 163, 370-381. doi:10.1016/j.apcatb.2014.08.008Botella, P., Solsona, B., García-González, E., González-Calbet, J. M., & López Nieto, J. M. (2007). The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chemical Communications, (47), 5040. doi:10.1039/b711228aSoriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622eChieregato, A., Soriano, M. D., García-González, E., Puglia, G., Basile, F., Concepción, P., … Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & López Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7Nagy, D., Nagy, D., Szilágyi, I. M., & Fan, X. (2016). Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Advances, 6(40), 33743-33754. doi:10.1039/c5ra26582gLin, S., Guo, Y., Li, X., & Liu, Y. (2015). Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires. Materials Letters, 152, 102-104. doi:10.1016/j.matlet.2015.03.099Miao, B., Zeng, W., Hussain, S., Mei, Q., Xu, S., Zhang, H., … Li, T. (2015). Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Materials Letters, 147, 12-15. doi:10.1016/j.matlet.2015.02.020Marques, A. C., Santos, L., Costa, M. N., Dantas, J. M., Duarte, P., Gonçalves, A., … Fortunato, E. (2015). Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Scientific Reports, 5(1). doi:10.1038/srep09910Magnéli, A., Virtanen, A. I., Olsen, J., Virtanen, A. I., & Sörensen, N. A. (1953). Studies on the Hexagonal Tungsten Bronzes of Potassium, Rubidium, and Cesium. Acta Chemica Scandinavica, 7, 315-324. doi:10.3891/acta.chem.scand.07-0315C. D. Vanderpool M. B. MacInnis J. C. Patton US Patent 1976Sanchez Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie International Edition, 51(29), 7194-7197. doi:10.1002/anie.201200746Sanchez Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie, 124(29), 7306-7309. doi:10.1002/ange.201200746García-González, E., Soriano, M. D., Urones-Garrote, E., & López Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465kSzilágyi, I. M., Madarász, J., Pokol, G., Király, P., Tárkányi, G., Saukko, S., … Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668xGuo, C., Yin, S., Zhang, P., Yan, M., Adachi, K., Chonan, T., & Sato, T. (2010). Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry, 20(38), 8227. doi:10.1039/c0jm01972kBotella, P., García-González, E., López Nieto, J. M., & González-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012Kong, Y., Sun, H., Zhao, X., Gao, B., & Fan, W. (2015). Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. Applied Catalysis A: General, 505, 447-455. doi:10.1016/j.apcata.2015.05.015Botella, P., Solsona, B., López Nieto, J. M., Concepción, P., Jordá, J. L., & Doménech-Carbó, M. T. (2010). Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 158(1-2), 162-169. doi:10.1016/j.cattod.2010.05.024Griffith, W. P., & Lesniak, P. J. B. (1969). Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1066. doi:10.1039/j19690001066Zheng, Z., Yan, B., Zhang, J., You, Y., Lim, C. T., Shen, Z., & Yu, T. (2008). Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films. Advanced Materials, 20(2), 352-356. doi:10.1002/adma.200701514Sanchez, C., Livage, J., & Lucazeau, G. (1982). Infrared and Raman study of amorphous V2O5. Journal of Raman Spectroscopy, 12(1), 68-72. doi:10.1002/jrs.1250120110Szilágyi, I. M., Madarász, J., Pokol, G., Hange, F., Szalontai, G., Varga-Josepovits, K., & Tóth, A. L. (2009). The effect of K+ ion exchange on the structure and thermal reduction of hexagonal ammonium tungsten bronze. Journal of Thermal Analysis and Calorimetry, 97(1), 11-18. doi:10.1007/s10973-008-9752-1Fouad, N. E., Nohman, A. K. ., Mohamed, M. A., & Zaki, M. I. (2000). Characterization of ammonium tungsten bronze [(NH4)0.33WO3] in the thermal decomposition course of ammonium paratungstate. Journal of Analytical and Applied Pyrolysis, 56(1), 23-31. doi:10.1016/s0165-2370(00)00084-xHuo, L., Zhao, H., Mauvy, F., Fourcade, S., Labrugere, C., Pouchard, M., & Grenier, J.-C. (2004). Synthesis and mixed conductivity of ammonium tungsten bronze with tunneling structures. Solid State Sciences, 6(7), 679-688. doi:10.1016/j.solidstatesciences.2004.03.036Perra, D., Drenchev, N., Chakarova, K., Cutrufello, M. G., & Hadjiivanov, K. (2014). Remarkable acid strength of ammonium ions in zeolites: FTIR study of low-temperature CO adsorption on NH4FER. RSC Adv., 4(99), 56183-56187. doi:10.1039/c4ra12504eOshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377Sohn, J. R., & Park, M. Y. (1998). Characterization of Zirconia-Supported Tungsten Oxide Catalyst. Langmuir, 14(21), 6140-6145. doi:10.1021/la980222zWachs, I. E., & Routray, K. (2012). Catalysis Science of Bulk Mixed Oxides. ACS Catalysis, 2(6), 1235-1246. doi:10.1021/cs2005482Tatibouët, J. M. (1997). Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General, 148(2), 213-252. doi:10.1016/s0926-860x(96)00236-0Badlani, M., & Wachs, I. E. (2001). Catalysis Letters, 75(3/4), 137-149. doi:10.1023/a:1016715520904Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., Concepción, P., … López Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307vKatryniok, B., Bonnotte, T., Dumeignil, F., & Paul, S. (2016). Production of Bioacrylic Acid. Chemicals and Fuels from Bio-Based Building Blocks, 217-244. doi:10.1002/9783527698202.ch

    On the Origin of the Spontaneous Formation of Nanocavities in Hexagonal Bronzes (W,V)O3

    Full text link
    [EN] Hexagonal (W,V)O3−x oxides of high thermal stability have been synthesized hydrothermally through the intermediate products Nax(W,V)O3·zH2O and (NH4)0.33−x(W,V)O3−y. The obtained crystals show nanostructured surface via the formation of a dense population of polyhedral nanocavities self-distributed along particular crystallographic directions. Nanocavities present a regular size that ranges from 5 to 10 nm in both length and width. The synthesis process involves a significant topotactic relationship between the as-synthesized product and the desired final product and this relationship is suggested as the origin of the observed surface nanostructure. The comparison of our results with observations in different solids has allowed us to suggest that the formation of nanocavities is an extensive spontaneous process when materials are obtained by the chemical reactions of solids leading to products with defined crystallographic orientation with respect to the original compound. The characterization provides evidence regarding the potential relevance of nanocavities in the functional properties of the resulting solids.Authors acknowledge the financial support from DGICYT in Spain through projects MAT2010-19837-C06-05 and CTQ2012-37925-C03-1. Authors are also grateful to the Centro de Microscopia Electronica (UCM) for facilities.García-González, E.; Soriano Rodríguez, MD.; Urones-Garrote, E.; López Nieto, JM. (2014). On the Origin of the Spontaneous Formation of Nanocavities in Hexagonal Bronzes (W,V)O3. Dalton Transactions. 43:14644-14652. https://doi.org/10.1039/C4DT01465KS14644146524

    Structural Properties

    No full text

    Préface

    No full text
    corecore