5,676 research outputs found

    Water exchange at a hydrated platinum electrode is rare and collective

    Get PDF
    We use molecular dynamics simulations to study the exchange kinetics of water molecules at a model metal electrode surface -- exchange between water molecules in the bulk liquid and water molecules bound to the metal. This process is a rare event, with a mean residence time of a bound water of about 40 ns for the model we consider. With analysis borrowed from the techniques of rare-event sampling, we show how this exchange or desorption is controlled by (1) reorganization of the hydrogen bond network within the adlayer of bound water molecules, and by (2) interfacial density fluctuations of the bulk liquid adjacent to the adlayer. We define collective coordinates that describe the desorption mechanism. Spatial and temporal correlations associated with a single event extend over nanometers and tens of picoseconds.Comment: 10 pages, 9 figure

    Harmonic functions, central quadrics, and twistor theory

    Full text link
    Solutions to the nn-dimensional Laplace equation which are constant on a central quadric are found. The associated twistor description of the case n=3n=3 is used to characterise Gibbons-Hawking metrics with tri-holomorphic SL(2, \C) symmetry.Comment: Final version. To appear in CQ

    On-chip broadband nonreciprocal light storage

    Get PDF
    Breaking the symmetry between forward- and backward-propagating optical modes is of fundamental scientific interest and enables crucial functionalities, such as isolators, circulators, and duplex communication systems. Although there has been progress in achieving optical isolation on-chip, integrated broadband nonreciprocal signal processing functionalities that enable transmitting and receiving via the same low-loss planar waveguide, without altering the frequency or mode of the signal, remain elusive. Here, we demonstrate a nonreciprocal delay scheme based on the unidirectional transfer of optical data pulses to acoustic waves in a chip-based integration platform. We experimentally demonstrate that this scheme is not impacted by simultaneously counterpropagating optical signals. Furthermore, we achieve a bandwidth more than an order of magnitude broader than the intrinsic optoacoustic linewidth, linear operation for a wide range of signal powers, and importantly, show that this scheme is wavelength preserving and avoids complicated multimode structures

    Screening Prevalence and Incidence of Colorectal Cancer Among American Indian/Alaskan Natives in the Indian Health Service

    Get PDF
    BackgroundStudies on colorectal cancer (CRC) screening and incidence among American Indian/Alaska Natives (AI/AN) are few.AimsOur aim was to determine CRC screening prevalence and to calculate CRC incidence among AI/AN receiving care within the Indian Health Service (IHS).MethodsA retrospective cohort study of AI/AN who utilized IHS from 1996 to 2004. AI/AN who were average-risk for CRC and received primary care within IHS were identified by searching the IHS Resource Patient Management System for selected ICD-9/CPT codes (n = 142,051). CRC screening prevalence was calculated and predictors of screening were determined for this group. CRC incidence rates were ascertained for the entire AI/AN population ages 50-80 who received IHS medical care between 1996 and 2004 (n = 283,717).ResultsCRC screening was performed in 4.0% of average-risk AI/AN. CRC screening was more common among women than men (RR = 1.6, 95% CI 1.4-1.7) and among AI/AN living in the Alaska region compared to the Pacific Coast region (RR = 2.5, 95% CI 2.2-2.8) while patients living in the Northern Plains (RR = 0.4, 95% CI 0.3-0.4) were less likely to have been screened. CRC screening was less common among patients with a greater number of primary care visits. The age-adjusted CRC incidence among AI/AN ages 50-80 was 227 cancers per 100,000 person-years.ConclusionsCRC was common among AI/AN receiving medical care within IHS. However, CRC screening prevalence was far lower than has been reported for the U.S. population

    Large-scale variation in density of an aquatic ecosystem indicator species

    Get PDF
    Funding: This work was supported by the New York State Department of Environmental Conservation and the Hudson River Natural Resource Trustees.Monitoring indicator species is a pragmatic approach to natural resource assessments, especially when the link between the indicator species and ecosystem state is well justified. However, conducting ecosystem assessments over representative spatial scales that are insensitive to local heterogeneity is challenging. We examine the link between polychlorinated biphenyl (PCB) contamination and population density of an aquatic habitat specialist over a large spatial scale using non-invasive genetic spatial capture-recapture. Using American mink (Neovison vison), a predatory mammal and an indicator of aquatic ecosystems, we compared estimates of density in two major river systems, one with extremely high levels of PCB contamination (Hudson River), and a hydrologically independent river with lower PCB levels (Mohawk River). Our work supports the hypothesis that mink densities are substantially (1.64-1.67 times) lower in the contaminated river system. We demonstrate the value of coupling the indicator species concept with well-conceived and spatially representative monitoring protocols. PCBs have demonstrable detrimental effects on aquatic ecosystems, including mink, and these effects are likely to be profound and long-lasting, manifesting as population-level impacts. Through integrating non-invasive data collection, genetic analysis, and spatial capture-recapture methods, we present a monitoring framework for generating robust density estimates across large spatial scales.Publisher PDFPeer reviewe

    Coherently refreshed acoustic phonons for extended light storage

    Get PDF
    Acoustic waves can serve as memory for optical information, however, acoustic phonons in the GHz regime decay on the nanosecond timescale. Usually this is dominated by intrinsic acoustic loss due to inelastic scattering of the acoustic waves and thermal phonons. Here we show a way to counteract the intrinsic acoustic decay of the phonons in a waveguide by resonantly reinforcing the acoustic wave via synchronized optical pulses. This scheme overcomes the previous constraints of phonon-based optical signal processing for light storage and memory. We experimentally demonstrate on-chip storage up to 40 ns, four times the intrinsic acoustic lifetime in the waveguide. We confirm the coherence of the scheme by detecting the phase of the delayed optical signal after 40 ns using homodyne detection. Through theoretical considerations we anticipate that this concept allows for storage times up to microseconds within realistic experimental limitations while maintaining a GHz bandwidth of the optical signal. The refreshed phonon-based light storage removes the usual bandwidth-delay product limitations of e.g. slow-light schemes
    corecore