412 research outputs found

    In-flight calibration of STEREO-B/WAVES antenna system

    Full text link
    The STEREO/WAVES (SWAVES) experiment on board the two STEREO spacecraft (Solar Terrestrial Relations Observatory) launched on 25 October 2006 is dedicated to the measurement of the radio spectrum at frequencies between a few kilohertz and 16 MHz. The SWAVES antenna system consists of 6 m long orthogonal monopoles designed to measure the electric component of the radio waves. With this configuration direction finding of radio sources and polarimetry (analysis of the polarization state) of incident radio waves is possible. For the evaluation of the SWAVES data the receiving properties of the antennas, distorted by the radiation coupling with the spacecraft body and other onboard devices, have to be known accurately. In the present context, these properties are described by the antenna effective length vectors. We present the results of an in-flight calibration of the SWAVES antennas using the observations of the nonthermal terrestrial auroral kilometric radiation (AKR) during STEREO roll maneuvers in an early stage of the mission. A least squares method combined with a genetic algorithm was applied to find the effective length vectors of the STEREO Behind (STEREO-B)/WAVES antennas in a quasi-static frequency range (Lantenna≪λwaveL_{antenna} \ll \lambda_{wave}) which fit best to the model and observed AKR intensity profiles. The obtained results confirm the former SWAVES antenna analysis by rheometry and numerical simulations. A final set of antenna parameters is recommended as a basis for evaluations of the SWAVES data

    Revenue Adequacy: The Good, the Bad and the Ugly

    Get PDF

    Collection efficiency and design of microbial air samplers

    Get PDF
    The variables affecting the physical collection efficiency of air samplers of the type that impact microbe-carrying particles onto agar were investigated using a simplified analytical method and computational fluid dynamics. The results from these two techniques were compared, as were the effect of jet velocity, nozzle size, and nozzle distance from the agar surface; also considered was the optimisation of these variables to obtain an efficient design of sampler. A technique is described that calculates the proportion of microbe-carrying particles that a sampler will collect from a typical size distribution of microbe-carrying particles found in an occupied room; the three air samplers studied were found to collect from about 22% to over 99% of the micro-organisms in the room air

    STUDIES ON THE SENSITIZATION OF ANIMALS WITH SIMPLE CHEMICAL COMPOUNDS

    Full text link

    Leukocyte migration in experimental inflammatory bowel disease

    Get PDF
    Emigration of leukocytes from the circulation into tissue by transendothelial migration, is mediated subsequently by adhesion molecules such as selectins, chemokines and integrins. This multistep paradigm, with multiple molecular choices at each step, provides a diversity in signals. The influx of neutrophils, monocytes and lymphocytes into inflamed tissue is important in the pathogenesis of chronic inflammatory bowel disease. The importance of each of these groups of adhesion molecules in chronic inflammatory bowel disease, either in human disease or in animal models, will be discussed below. Furthermore, the possibilities of blocking these different steps in the process of leukocyte extravasation in an attempt to prevent further tissue damage, will be taken into account

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201

    First report of mitochondrial COI in foraminifera and implications for DNA barcoding

    Get PDF
    Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.Microbial BiotechnologyNaturali

    On Horava-Lifshitz "Black Holes"

    Full text link
    The most general spherically symmetric solution with zero shift is found in the non-projectable Horava-Lifshitz class of theories with general coupling constants. It contains as special cases, spherically symmetric solutions found by other authors earlier. It is found that the generic solution has conventional (AdS, dS or flat) asymptotics with a universal 1/r tail. There are several special cases where the asymptotics differ, including the detailed balance choice of couplings. The conventional thermodynamics of this general class of solutions is established by calculating the energy, temperature and entropy. Although several of the solutions have conventional horizons, for particles with ultra-luminal dispersion relations such solutions appear to be horizonless.Comment: Latex 41 pages, 5 figure
    • …
    corecore