24 research outputs found

    Electrolyte-gated transistors for enhanced performance bioelectronics

    No full text
    Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed

    O-alkylhydroxylamines as rationally-designed mechanism-based inhibitors of indoleamine 2,3-dioxygenase-1

    No full text
    Indoleamine 2,3-dioxygenase-1 (IDO1) is a promising therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression. Recently important advances have been made in understanding IDO1’s catalytic mechanism. Although much remains to be discovered, there is strong evidence that the mechanism proceeds through a heme-iron bound alkylperoxy transition or intermediate state. Accordingly, we explored stable structural mimics of the alkylperoxy species and provide evidence that such structures do mimic the alkylperoxy transition or intermediate state. We discovered that O-benzylhydroxylamine, a commercially available compound, is a potent sub-micromolar inhibitor of IDO1. Structure-activity studies of over forty derivatives of O-benzylhydroxylamine led to further improvement in inhibitor potency, particularly with the addition of halogen atoms to the meta position of the aromatic ring. The most potent derivatives and the lead, O-benzylhydroxylamine, have high ligand efficiency values, which are considered an important criterion for successful drug development. Notably, two of the most potent compounds demonstrated nanomolar-level cell-based potency and limited toxicity. The combination of the simplicity of the structures of these compounds and their excellent cellular activity makes them quite attractive for biological exploration of IDO1 function and antitumor therapeutic applications

    Polyclonal B Cell Differentiation and Loss of Gastrointestinal Tract Germinal Centers in the Earliest Stages of HIV-1 Infection

    Get PDF
    BACKGROUND: The antibody response to HIV-1 does not appear in the plasma until approximately 2–5 weeks after transmission, and neutralizing antibodies to autologous HIV-1 generally do not become detectable until 12 weeks or more after transmission. Moreover, levels of HIV-1–specific antibodies decline on antiretroviral treatment. The mechanisms of this delay in the appearance of anti-HIV-1 antibodies and of their subsequent rapid decline are not known. While the effect of HIV-1 on depletion of gut CD4(+) T cells in acute HIV-1 infection is well described, we studied blood and tissue B cells soon after infection to determine the effect of early HIV-1 on these cells. METHODS AND FINDINGS: In human participants, we analyzed B cells in blood as early as 17 days after HIV-1 infection, and in terminal ileum inductive and effector microenvironments beginning at 47 days after infection. We found that HIV-1 infection rapidly induced polyclonal activation and terminal differentiation of B cells in blood and in gut-associated lymphoid tissue (GALT) B cells. The specificities of antibodies produced by GALT memory B cells in acute HIV-1 infection (AHI) included not only HIV-1–specific antibodies, but also influenza-specific and autoreactive antibodies, indicating very early onset of HIV-1–induced polyclonal B cell activation. Follicular damage or germinal center loss in terminal ileum Peyer's patches was seen with 88% of follicles exhibiting B or T cell apoptosis and follicular lysis. CONCLUSIONS: Early induction of polyclonal B cell differentiation, coupled with follicular damage and germinal center loss soon after HIV-1 infection, may explain both the high rate of decline in HIV-1–induced antibody responses and the delay in plasma antibody responses to HIV-1. Please see later in the article for Editors' Summar
    corecore