1,033 research outputs found

    Features of ion acceleration by circularly polarized laser pulses

    Full text link
    The characteristics of a MeV ion source driven by superintense, ultrashort laser pulses with circular polarization are studied by means of particle-in-cell simulations. Predicted features include high efficiency, large ion density, low divergence and the possibility of femtosecond duration. A comparison with the case of linearly polarized pulses is made.Comment: 4 pages, 4 figure

    Efficiency of radiation friction losses in laser-driven "hole boring" of dense targets

    Full text link
    In the interaction of laser pulses of extreme intensity (>1023 Wcm−2>10^{23}~{\rm W cm}^{-2}) with high-density, thick plasma targets, simulations show significant radiation friction losses, in contrast to thin targets for which such losses are negligible. We present an analytical calculation, based on classical radiation friction modeling, of the conversion efficiency of the laser energy into incoherent radiation in the case when a circularly polarized pulse interacts with a thick plasma slab of overcritical initial density. By accounting for three effects including the influence of radiation losses on the single electron trajectory, the global `hole boring' motion of the laser-plasma interaction region under the action of radiation pressure, and the inhomogeneity of the laser field in both longitudinal and transverse direction, we find a good agreement with the results of three-dimensional particle-in-cell simulations. Overall, the collective effects greatly reduce radiation losses with respect to electrons driven by the same laser pulse in vacuum, which also shift the reliability of classical calculations up to higher intensities.Comment: 15 pages, 3 figure

    Quantum effects on radiation friction driven magnetic field generation

    Full text link
    Radiation losses in the interaction of superintense circularly polarized laser pulses with high-density plasmas can lead to the generation of strong quasistatic magnetic fields via absorption of the photon angular momentum (so called inverse Faraday effect). To achieve the magnetic field strength of several Giga Gauss laser intensities ≃1024\simeq 10^{24}W/cm2^2 are required which brings the interaction to the border between the classical and the quantum regimes. We improve the classical modeling of the laser interaction with overcritical plasma in the "hole boring" regime by using a modified radiation friction force accounting for quantum recoil and spectral cut-off at high energies. The results of analytical calculations and three-dimensional particle-in-cell simulations show that, in foreseeable scenarios, the quantum effects may lead to a decrease of the conversion rate of laser radiation into high-energy photons by a factor 2-3. The magnetic field amplitude is suppressed accordingly, and the magnetic field energy - by more than one order in magnitude. This quantum suppression is shown to reach a maximum at a certain value of intensity, and does not grow with the further increase of intensities. The non monotonic behavior of the quantum suppression factor results from the joint effect of the longitudinal plasma acceleration and the radiation reaction force. The predicted features could serve as a suitable diagnostic for radiation friction theories.Comment: 10 pages, 3 figure

    Radiation Reaction Effects on Electron Nonlinear Dynamics and Ion Acceleration in Laser-solid Interaction

    Full text link
    Radiation Reaction (RR) effects in the interaction of an ultra-intense laser pulse with a thin plasma foil are investigated analytically and by two-dimensional (2D3P) Particle-In-Cell (PIC) simulations. It is found that the radiation reaction force leads to a significant electron cooling and to an increased spatial bunching of both electrons and ions. A fully relativistic kinetic equation including RR effects is discussed and it is shown that RR leads to a contraction of the available phase space volume. The results of our PIC simulations are in qualitative agreement with the predictions of the kinetic theory

    Ion dynamics and coherent structure formation following laser pulse self-channeling

    Full text link
    The propagation of a superintense laser pulse in an underdense, inhomogeneous plasma has been studied numerically by two-dimensional particle-in-cell simulations on a time scale extending up to several picoseconds. The effects of the ion dynamics following the charge-displacement self-channeling of the laser pulse have been addressed. Radial ion acceleration leads to the ``breaking'' of the plasma channel walls, causing an inversion of the radial space-charge field and the filamentation of the laser pulse. At later times a number of long-lived, quasi-periodic field structures are observed and their dynamics is characterized with high resolution. Inside the plasma channel, a pattern of electric and magnetic fields resembling both soliton- and vortex-like structures is observed.Comment: 10 pages, 5 figures (visit http://www.df.unipi.it/~macchi to download a high-resolution version), to appear in Plasma Physics and Controlled Fusion (Dec. 2007), special issue containing invited papers from the 34th EPS Conference on Plasma Physics (Warsaw, July 2007

    Highlights from particle-in-cell simulations of superintense laser-plasma interactions

    Get PDF
    A selection of results from particle-in-cell simulation of laser-plasma interactions in two and three spatial dimensions are presented. The generation of coherent, long-living electromagnetic structures and the 3D dynamics of selfchanneling have been studied in low-density plasmas. The acceleration of ions driven by radiation pressure in high-density, thin targets is also investigated

    Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses

    Full text link
    The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2ω2\omega, with ω\omega the laser frequency, to a 2D electromagnetic oscillation at frequency ω\omega and wavevector k>ω/ck>\omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for publication in Phys. Rev. Let

    Widening use of dexamethasone implant for the treatment of macular edema

    Get PDF
    Sustained-release intravitreal 0.7 mg dexamethasone (DEX) implant is approved in Europe for the treatment of macular edema related to diabetic retinopathy, branch retinal vein occlusion, central retinal vein occlusion, and non-infectious uveitis. The implant is formulated in a biodegradable copolymer to release the active ingredient within the vitreous chamber for up to 6 months after an intravitreal injection, allowing a prolonged interval of efficacy between injections with a good safety profile. Various other ocular pathologies with inflammatory etio­pathogeneses associated with macular edema have been treated by DEX implant, including neovascular age-related macular degeneration, Irvine–Gass syndrome, vasoproliferative retinal tumors, retinal telangiectasia, Coats’ disease, radiation maculopathy, retinitis pigmentosa, and macular edema secondary to scleral buckling and pars plana vitrectomy. We undertook a review to provide a comprehensive collection of all of the diseases that benefit from the use of the sustained-release DEX implant, alone or in combination with concomitant therapies. A MEDLINE search revealed lack of randomized controlled trials related to these indications. Therefore we included and analyzed all available studies (retrospective and prospective, com­parative and non-comparative, randomized and nonrandomized, single center and multicenter, and case report). There are reports in the literature of the use of DEX implant across a range of macular edema-related pathologies, with their clinical experience supporting the use of DEX implant on a case-by-case basis with the aim of improving patient outcomes in many macular pathologies. As many of the reported macular pathologies are difficult to treat, a new treat­ment option that has a beneficial influence on the clinical course of the disease may be useful in clinical practice
    • …
    corecore