976 research outputs found

    Growth and characterisation of titanium sulphide nanostructures by surface-assisted vapour transport methods; from trisulphide ribbons to disulphide nanosheets

    Get PDF
    Surface Assisted Chemical Vapour Transport (SACVT) methods have been employed to grow nanostructures of titanium disulphide (TiS2) and titanium trisulphide (TiS3). SACVT reactions occur between titanium and sulphur powders to form TiSx species transported in the vapour phase to grow nanometric flower-like structures on titanium-coated silica substrates. The evolution of structure and composition has been followed by powder X-ray diffraction, electron microscopy and Raman spectroscopy. At 1 : 2 Ti : S ratios, the size and shape of the hexagonal 1T-TiS2 titanium disulphide structures formed can be varied from flower-like growths with 'petals' formed from nanosheets 10 nm thick to platelets microns across. Increasing the proportion of sulphur (Ti : S 1 : 4) enables TiS3 flower-like structures composed of radiating nanoribbons to grow at elevated temperatures without decomposition to TiS2. TEM/SAED suggests that individual trisulphide ribbons grow along the [010] direction. Magnetic properties of the disulphide nanomaterials have been determined using SQUID magnetometry and Raman spectra for disulphides suggest that their crystal and electronic structures may be more complex than expected for bulk, stoichiometric, CdI2-structured TiS2

    Shear-induced α → γ transformation in nanoscale Fe-C composite

    Get PDF
    High-resolution transmission electron microscopy and three-dimensional atom probe observations show clearly that a reverse transformation of body-centred cubic ferrite to face-centred cubic austenite occurs during severe plastic deformation of a pearlitic steel resulting in a nanocrystalline structure, something that never occurs in conventional deformation of coarse-grained iron and steels. The driving force and the mechanisms of this reverse transformation are discussed. It is shown that nanostructure and shear stresses are essential for this process, and the results confirm molecular dynamics predictions of such transformations in nanocrystalline iron

    The structure and possible origins of stacking faults in gamma-yttrium disilicate

    Get PDF
    Parallel stacking faults on (010) planes are frequently observed in hot-pressed Y2Si2O7. A combination of conventional dark-field imaging and high-resolution transmission electron microscopy was used to investigate the structure of these faults and it was found that they consist of the repeat of one layer of the two layer γ-Y2Si2O7 structure with an associated in-plane rigid body displacement. The resulting structure was confirmed by image simulation of high-resolution images from two perpendicular projections. A model for the formation of the stacking faults is proposed as a consequence of a transformation from β-Y2Si2O7 to γ-Y2Si2O7 in the hot pressing

    Nanocharacterisation of precipitates in austenite high manganese steels with advanced techniques: HRSTEM and DualEELS mapping

    Get PDF
    To achieve optimal mechanical properties in high manganese steels, the precipitation of nanoprecipitates of vanadium and niobium carbides is under investigation. It is shown that under controlled heat treatments between 850°C and 950°C following hot deformation, few-nanometre precipitates of either carbide can be produced in test steels with suitable contents of vanadium or niobium. The structure and chemistry of these precipitates are examined in detail with a spatial resolution down to better than 1 nm using a newly commissioned scanning transmission electron microscope. In particular, it is shown that the nucleation of vanadium carbide precipitates often occurs at pre-existing titanium carbide precipitates which formed from titanium impurities in the bulk steel. This work will also highlight the links between the nanocharacterisation and changes in the bulk properties on annealing

    Compressed sensing electron tomography using adaptive dictionaries: a simulation study

    Get PDF
    Electron tomography (ET) is an increasingly important technique for examining the three-dimensional morphologies of nanostructures. ET involves the acquisition of a set of 2D projection images to be reconstructed into a volumetric image by solving an inverse problem. However, due to limitations in the acquisition process this inverse problem is considered ill-posed (i.e., no unique solution exists). Furthermore reconstruction usually suffers from missing wedge artifacts (e.g., star, fan, blurring, and elongation artifacts). Compressed sensing (CS) has recently been applied to ET and showed promising results for reducing missing wedge artifacts caused by limited angle sampling. CS uses a nonlinear reconstruction algorithm that employs image sparsity as a priori knowledge to improve the accuracy of density reconstruction from a relatively small number of projections compared to other reconstruction techniques. However, The performance of CS recovery depends heavily on the degree of sparsity of the reconstructed image in the selected transform domain. Prespecified transformations such as spatial gradients provide sparse image representation, while synthesising the sparsifying transform based on the properties of the particular specimen may give even sparser results and can extend the application of CS to specimens that can not be sparsely represented with other transforms such as Total variation (TV). In this work, we show that CS reconstruction in ET can be significantly improved by tailoring the sparsity representation using a sparse dictionary learning principle

    Simulation and analysis of solenoidal ion sources

    Get PDF
    We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source

    Using EBSD and TEM-Kikuchi patterns to study local crystallography at the domain boundaries of lead zirconate titanate

    Get PDF
    Reliable EBSD mapping of 90° domains in a tetragonal ferroelectric perovskite has been achieved for the first time, together with reliable automated orientation determination from TEM-Kikuchi patterns. This has been used to determine misorientation angles at 90° domain boundaries and thus local <i>c</i>/<i>a</i> ratios. The sources of orientation noise/error and their effects on the misorientation angle data have been thoroughly analyzed and it is found that this gives a cosine distribution of misorientation angles about the mean with a characteristic width related to the width of the orientation noise distribution. In most cases, a good agreement is found between local <i>c</i>/<i>a</i> ratios and global measurements by X-ray diffraction, but some clear discrepancies have also been found suggesting that real local variations are present, perhaps as a consequence of compositional inhomogeneities

    HREM studies of intergrowths in Sr2[Srn-1TinO3n+1] Ruddlesden-Popper phases synthesized by mechanochemical activation

    Get PDF
    A mechanochemical activation route has been applied in order to obtain the <i>n</i>=1–4 and ∞ members of the Sr<sub>2</sub>[Sr<sub>n</sub><sub>−1</sub>Ti<sub>n</sub>O<sub>3n+1</sub>] Ruddlesden– Popper series from different (<i>n</i>+1)SrO:nTiO<sub>2</sub> mixtures. The mechanosynthesis of SrTiO<sub>3</sub> and Sr<sub>2</sub>TiO<sub>4</sub> was observed during the milling process from the initial stoichiometric mixture, but in the cases of the <i>n</i>=2–4 members, a subsequent thermal treatment was needed. The synthesis protocol of Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> has been greatly improved and this compound can be isolated as a single, crystalline phase after annealing at 800°C. In the case of Sr<sub>4</sub>Ti<sub>3</sub>O<sub>10</sub> and Sr<sub>5</sub>Ti<sub>4</sub>O<sub>13</sub>, the formation temperature was also decreased, but members with <i>n</i>=3 and 4 could not be isolated. Detailed investigations using electron microscopy methods (TEM, HREM and SAED) were carried out in the samples corresponding to <i>n</i>=2–4. Although a single ordered Sr<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub> structure is dominant in the sample corresponding to <i>n</i>=2, a few intergrowths of other Ruddlesden–Popper phases were observed. In the cases of <i>n</i>=3 and 4, the intergrowths of Ruddlesden–Popper phases are more frequent than in the <i>n</i>=2 composition and are randomly distributed in the sample. The more frequent occurrence of such stacking faults, with increasing <i>n</i> value, leads to a somewhat disordered layer stacking sequence
    corecore