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Parallel stacking faults on (010) planes are frequently observed in 

hot-pressed Y2Si2O7.  A combination of conventional dark-field 

imaging and high-resolution transmission electron microscopy was 

used to investigate the structure of these faults and it was found 

that they consist of the repeat of one layer of the two layer γ-

Y2Si2O7 structure with an associated in-plane rigid body 

displacement.  The resulting structure was confirmed by image 

simulation of high-resolution images from two perpendicular 

projections.  A model for the formation of the stacking faults is 

proposed as a consequence of a transformation from β-Y2Si2O7 to 

γ-Y2Si2O7 in the hot pressing. 
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1. Introduction 

Yttrium silicates have excellent high temperature mechanical properties and 

display these until very close to their melting points.  They are also fully oxidised and 

do not contain volatile components and thus are suitable for use in highly oxidising 

environments.  For this reason, they have been investigated as possible matrix 

materials for oxide-oxide ceramic matrix composites [1,2] and as oxidation barrier 

coatings for non-oxide ceramic matrix composites [3-6]. 

Yttrium disilicate, along with the rare-earth disilicates, displays a remarkable 

polymorphism and this is well reviewed by Liddell and Thompson [7] and by Felsche 

[8].  Four well-characterised phases: α (triclinic), β (monoclinic), γ (monoclinic), and 

δ (orthorhombic) are known to exist.  Furthermore, another less well characterised 

phase, normally denoted y, is also known [7,9], and often occurs in Y-doped SiAlONs 

[10,11].  Lastly, two different forms of δ were distinguished by Dinger et al. [12] 

using high-resolution TEM.  The four well-characterised phases have been shown to 

be in the relation: 

  (1) δ⎯⎯⎯ →←γ⎯⎯⎯ →←β⎯⎯⎯ →←α °°° CCC 153514451225

by Ito and Johnson [13].  These temperatures are however affected by preparation 

techniques and may vary somewhat [10].  Moreover, impurities or doping elements 

may affect the phase equilibria since in Si3N4 and SiAlONs, the main observed phases 

are normally y, β and δ [11,12,14] and other phases such as α and γ are not seen.   

One major problem, however, with yttrium disilicate is that the yttria and 

silica react very slowly with one another and it is therefore difficult to achieve phase 

equilibrium, especially when prepared by mixed oxide methods.  Thus, the precursor 

powder for the ceramic studied in this work was prepared by a chemical synthesis 



route [1], to ensure atomic scale mixing of the SiO2 and Y2O3 complexes prior to 

calcination and sintering.  In view of the difficulty in sintering such materials, as for 

instance typified in the work of Aparicio et al. [4] hot pressing was used to produce 

Y2Si2O7 ceramics.  This study then concentrates on the structure and origins of the 

frequently observed planar faults in the resulting material, using transmission electron 

microscopy as the primary experimental tool. 

  

2. Materials preparation and experimental procedure 

Amorphous yttrium disilicate precursor powders were prepared from yttrium 

acetate and tetraethylorthosilicate as described previously [1,2].  These were then 

mixed with 3 wt. % LiF and then hot pressed at 10 MPa and 1600 °C resulting in the 

formation of a dark-coloured plate with a density of 3.48 g cm-3 corresponding to 86 

% of the theoretical density of γ-Y2Si2O7. 

The material was prepared for transmission electron microscopy (TEM) using 

a standard procedure of cutting, grinding and polishing from both sides, doubled-

sided dimpling, and argon ion milling (Gatan PIPS, 5 kV, ± 4°), followed by carbon 

coating to prevent charging.  Conventional diffraction contrast TEM observations 

were performed with a JEOL 2000FX and a Philips CM20, both operated at 200 kV 

(both Stuttgart).  High-resolution TEM (HRTEM) was performed with a JEOL 

4000EX operated at 400 kV (MPI-Stuttgart), the Stuttgart ARM operated at 1250 kV 

and a JEOL 3010 equipped with a Gatan Image Filter (GIF) operated at 297 kV (TU-

Darmstadt). 

Approximate defocus values for HRTEM images were determined at the 

microscope using the deviation from the minimum contrast condition and from 

analysis of the contrast at amorphous regions at the specimen edges using the NCEM 



Focus Determination Package [15] for the Gatan Digital Micrograph software 

package.  These and other parameters were then refined using the Iterative Digital 

Image Matching method [16] where the cross-correlation between experimental and 

simulated images of perfect crystal is maximised by iteratively varying the various 

electron optical parameters.  Once the parameters had been optimised, experimental 

defect images were compared with those simulated from a model defect structure, and 

atoms were then allowed to relax using a similar iterative procedure to maximise the 

cross-correlation, thus making possible the determination of the atomic structure of 

defects. 

 

3. Structural details of the yttrium disilicates 

As stated above the four well-characterised phase of Y2Si2O7.  These are briefly 

summarised in Table 1 below.  The structural parameters are taken from Liddell and 

Thompson [7], with the exception of those for γ-Y2Si2O7, which are taken from a 

more recent study of Leonyuk et al. [17].  The information on bonding was derived 

from the earlier review article of Felsche [8].  Since the majority of this paper 

concerns the γ-Y2Si2O7 phase, two important projections of this crystal structure,[100] 

and [001],  are shown in Figure 1.  This shows two layers of Si2O7 double tetrahedra 

along the length of the long b-axis alternating in a zigzag fashion. 

 

 

Structure α-Y2Si2O7 β-Y2Si2O7 γ-Y2Si2O7 δ-Y2Si2O7 

Symmetry Triclinic  Monoclinic  Monoclinic Orthorhombic 

Space group P 1  C2/m P21/c Pna21 



a 6.59 Å 6.875 Å 4.694 Å 13.66 Å 

b 6.64 Å 8.970 Å 10.856 Å 5.020Å 

c 12.25 Å 4.721 Å 5.588 Å 8.152 Å 

α 94.0° 90° 90° 90° 

β 89.2° 101.74° 96° 90° 

γ 93.1° 90° 90° 90° 

Si-O bonding Si3O10 triple 

corner sharing 

tetrahedra and 

SiO4 single 

tetrahedra 

Si2O7 double 

corner sharing 

tetrahedra 

Si2O7 double 

corner sharing 

tetrahedra 

Si2O7 double 

corner sharing 

tetrahedra 

 

Table 1: Crystal structure details for the main crystalline Y2Si2O7 polymorphs 

 

4. Results and analysis 

 

4.1. Long parallel faults 

 As reported previously [18], the microstructure of the hot-pressed compact 

consists of grains having the γ-Y2Si2O7 structure, containing approximately spherical 

glassy inclusions and crossed by numerous planar faults, all of which lie 

predominantly on the same crystallographic plane.  The grains have a composition 

close to the stoichiometric Y2Si2O7 composition, with perhaps a slight tendency to 

small Si excesses, and the glassy inclusions are primarily SiO2 with about 2.5 cat % Y 

present.  This microstructure is shown in Figure 2, which shows clearly the frequent 



parallel planar faults as fine lines.  In every case examined, the grains displayed the γ-

Y2Si2O7 structure as for instance illustrated by the indexed diffraction pattern of 

Figure 3. 

Figure 4 shows dark field TEM images of a stacking fault in an yttrium disilicate 

grain.  In Figure 4a taken using the 220  diffraction vector, the fault is clearly visible 

and inclined to the beam direction.  The majority of the fault lies on one 

crystallographic plane, although two steps on other planes can be seen (A and B).  

The fault terminates at a partial dislocation (D).  A silica-glass inclusion is also visible 

(G).  When the fault is imaged with the 040 diffraction vector as shown in Figure 4b it 

is edge-on, out-of-contrast and lies perpendicular to the diffraction vector.  The partial 

dislocation is, however, still in contrast, and some residual contrast is shown at step 

A, suggesting a different local relaxation at the fault on this plane. Other studies 

confirm this and show that the faults lie primarily on the (010) planes and that g.R is 

integer or near-integer for g = 040. 

In order to understand why the faults arise on the (010) planes it is necessary to 

revisit the crystal structure.  As may be seen in Figure 1, the structure of gamma 

yttrium disilicate consists of a zigzag structure of Si2O7 double tetrahedra along the b-

axis.  Perpendicular to this, there are gaps every half unit cell.  Thus, it would be easy 

to remove one of the sets of double tetrahedra resulting in the repeat of the same 

orientation of double tetrahedra.   In this case, no significant disruption would be 

caused to the double tetrahedra and all that would be required would be a suitable 

rigid body displacement at the fault in order to maintain good bonding and minimise 

electrostatic repulsion across the fault. 

To determine the details of the stacking fault structure, it is most convenient to use 

high-resolution transmission electron microscopy to image the stacking faults edge-on 



at atomic resolution.  Figure 5a shows an HRTEM image of a stacking fault taken 

along the [100] zone axis of the crystal.  The unit cells are shown in outline along 

with the zigzag structure of the layers.  It is clear to see that a layer is repeated at the 

fault core, as expected.  The rigid body displacement at the interface in the plane 

perpendicular to [100] could also be measured by measuring the displacement of the 

unit cells on the one side of the fault with respect to those on the other side.  Figure 5b 

shows an HRTEM image of the same boundary taken along the almost perpendicular 

[001] zone axis.  Again a zigzag structure is shown and again the rigid body 

displacement in this plane could be measured.  Combining these two measurements of 

the rigid body displacement the fault displacement vector, R, was determined to be 

[0.26, 0.48, -0.73].  This diffraction vector would also give g.R ≈ integer for g = 040, 

thus giving the contrast extinction in diffraction contrast noted in Fig 4b.  Thus, the 

diffraction contrast TEM and HRTEM results are in good agreement.  Using this R 

vector a model structure for the fault could be constructed and this is shown in Figure 

6, once again using the two projections [100] and [001]. 

 In order to test this stacking fault structure, image simulations were performed 

for each of the images of Figs 5a and 5b.  Firstly, the image simulation was compared 

with the experimental image for an area of perfect crystal near the fault and the 

electron optical parameters iteratively changed to optimise the cross-correlation.  The 

resulting parameters are shown in Table 2.   

 

 Fig 5a – [100] projection Fig 5b – [001] projection 

Microscope JEOL 4000EX (Stuttgart) JEOL 3010 (Darmstadt) 

Sample thickness 9.1 nm 11.4 nm 

Defocus -72 nm -52 nm 



2-fold astigmatism 7.5 nm @ 10.3° 4.3 nm @ 104° 

3-fold astigmatism 71 nm @ 6.5° 249 nm @ 32° 

Coma 0.3 nm @ 0.8° 299.6 nm @ 118.4° 

 

Table 2: Iteratively determined electron optical parameters for the images of Figures 

5a and 5b. 

 

The tabulated parameters were then used in the simulation of the fault images.  

In both cases 10 unit cells along the fault were averaged from the experimental 

images to provide a better signal to noise ratio for the comparison.  The experimental 

and simulated images were then compared with one another and in both cases showed 

extremely high cross-correlation coefficients, demonstrating that the model structure 

and displacement vector, R, are extremely good.  Some attempts were made to change 

R slightly but these always resulted in reduced cross-correlation coefficient.  The Y 

and Si atoms close to the fault were then allowed to relax in the simulation until the 

cross-correlation was maximised resulting in cross-correlations of 94.3 % and 92 % 

for the images of Figures 5a and 5b, respectively.  The experimental, simulated and 

difference images are then shown in Figures 7a and 7b, respectively.  A colour 

representation was used to enhance the otherwise very low contrast difference images.  

These show the extremely good match between the simulated structures and the 

experimental images and demonstrate that we can have confidence in the measured R 

vector and associated model structure of Figure 6. 

  



4.2. Steps on the stacking faults 

 The steps A and B in Figure 3a were also studied by stereographic trace 

analysis to determine their habit planes.  Figure 8 shows a picture of another 

arrangement of steps on some stacking faults and their habit planes were also 

determined in the same manner.  The results are summarised in Table 3 below.  It 

should be noted that the steps are generally rather short and this leads to large errors 

in orientation determination by trace analysis.  Thus errors in the determination of the 

habit plane of 5-10° would not be surprising. 

 

Step Habit plane Angular 

Deviation 

From low-

index plane 

A (0.99, -0.21, -0.03) 5.3° (100) 

B (0.03, 1.83, -0.73) 6.9° ( 102 ) 

C (-0.91, -0.97, 0.09) 4.5° )011(  

 

 Despite the large errors in the determination of the habit planes, it is very clear 

that each step has a distinctly different habit and no clear pattern seems to emerge.  It 

can only be concluded that there are several possible habit planes for steps and that 

there is no obvious low energy choice for a step if the stacking fault has to deviate 

from the (010) plane.  Now if we examine the diagrams of the γ-Y2Si2O7 structure 

shown in Figure 1 it is plain that there is little opportunity to shift the structure or 

remove layers of any planes perpendicular to the [100] direction without cutting 

through the double tetrahedra or introducing corrugations.  The ( 102 ) plane can be 

represented in this projection and it would necessarily be rather corrugated to avoid 

cutting the double tetrahedra.  This is shown in Figure 9.  It is perhaps more 



straightforward to imagine shifts or missing planes on the (100) plane by looking at 

the [001] projection, and this is also indicated on Figure 9.  Similarly, the 

)011( plane seems to cut between the double tetrahedra and seems also to represent a 

way of shifting the plane off (010) without causing too much structural disruption. 

 Whatever the precise structure of the steps, it is clear that they are relatively 

high energy in comparison to the (010) plane stacking faults, since they account for 

only a small proportion of the stacking fault surface area.  The relatively high energy 

is not surprising in view of the amount of structural disruption caused by losing planes 

and introducing shifts on any plane other than (010) since this may disrupt the double 

tetrahedra, or place or tetrahedra at energetically unfavourable distances from one 

another. 

 Stacking faults are occasionally observed to end within grains, rather than at 

grain boundaries, and this always occurs at partial dislocations as seen in Fig 3a, as is 

crystallographically necessary.  The density of either partial or lattice dislocations is 

uniformly low in all samples observed, and this suggests that there was no significant 

plastic deformation of the grains by slip during hot pressing.  Thus, the partial 

dislocations are unlikely to be the result of slip processes.  Rather they seem to have 

arisen from the same process that formed the stacking faults, as discussed below. 

 

4.3. Possible formation mechanism for the stacking faults 

 It was previously observed that the precursor powder behaved much as in 

earlier reports of the crystallisation of pure yttrium disilicate [13] in that it crystallised 

to the α, β and γ phases at successively higher temperatures [1].  Furthermore, 

previous work has shown that the crystallisation of the amorphous precursor to α-

Y2Si2O7 occurs very rapidly on heating in just a narrow temperature window, and that 



this is a highly exothermic reaction [2].  Thus, we can be sure that the ceramic was 

initially transformed to α-Y2Si2O7 and it is highly likely that this transformed to β-

Y2Si2O7 prior to the formation of γ-Y2Si2O7.   

Now the α-Y2Si2O7 and β-Y2Si2O7  structures are totally different in that α-

Y2Si2O7 consists of Si3O10 triple tetrahedra and SiO4 single tetrahedra whereas the β-

Y2Si2O7 just contains Si2O7 corner sharing double tetrahedra.  Thus, any 

transformation from α-Y2Si2O7 to β-Y2Si2O7 is completely reconstructive involving 

bond-breaking and new bond formation.  Consequently no crystallographic 

correspondence is expected between the two phases, and we expect few 

microstructural relics of this the transformation.  A similar argument would also apply 

if the α-Y2Si2O7 transformed directly to γ-Y2Si2O7 since this, like β-Y2Si2O7 contains 

only Si2O7 corner sharing double tetrahedra.  Thus, no microstructural relics such as 

stacking faults would be expected from transformations from α-Y2Si2O7 to β-Y2Si2O7 

or even α-Y2Si2O7 direct to γ-Y2Si2O7 without first passing through the β-Y2Si2O7 

phase. 

Now in some systems, a structure can order from a higher symmetry to a 

lower symmetry such as in an ordering transition or in a ferroelastic phase transition.   

Crystallographically, the ordered phase has a low symmetry space group, which is a 

sub-group of the space group of the original higher symmetry phase. Now if the 

transformation starts at two different places in a grain with different orientational or 

translational states related by a symmetry operator of the higher symmetry parent 

phase (which is suppressed in the lower symmetry phase) then some form of domain 

boundary must form.  A general crystallographic discussion of this effect is given by 

Van Tendeloo and Amelinckx [19].  The present transformation does not, however, 

fulfil this above criterion; the γ-Y2Si2O7 phase has a higher symmetry (space group 



number 14, P21/c) than the parent β-Y2Si2O7 phase (space group number 12, C2/m) 

and there is no simple subgroup-supergroup relationship.   

Nevertheless, there are definite correspondences between the two phases in 

that both consist of corner sharing Si2O7 double tetrahedra with Y atoms between.  

Therefore one could be transformed to the other by shuffles of the Y atoms and 

movement and/or rotation of the double tetrahedra.  One model that could lead to this 

is shown in Figure 10 where [010]γ//[010]β and [100]γ//[100]β.  The double tetrahedra 

would have to be rotated from the beta phase orientation to the gamma phase 

orientation, but the sense of rotation adopted in different parts of the prior beta crystal 

could be opposite.  Thus, we would end up with two gamma crystals that differ just by 

being half a unit cell out of phase.  This could be represented by one region with the 

double tetrahedra in a zig-zag-zig-zag order, and another having the double tetrahedra 

in a zag-zig-zag-zig order.  Thus, inevitably at the boundary there will be two zigs or 

two zags adjacent to one another, resulting in the formation of a stacking fault. 

Whilst a model has been presented for how the frequent stacking faults could 

arise, and it does seem likely that they are a relic of the β-Y2Si2O7 to γ-Y2Si2O7 

transformation, it is not yet possible to confirm this hypothesis.  To do so would 

require the production of samples at just the right sintering temperature so that the two 

phases coexist.  Then it would be possible to determine the orientation relationship 

between the two and if stacking faults are really arising as a consequence of the 

transformation. 

 

5. Conclusions 

Parallel stacking faults on (010) planes are a common feature of γ-Y2Si2O7.  High 

resolution transmission electron microscopy was used along different projections in 



the (010) plane to determine the structure of the faults and the displacement vector 

could be readily determined from the unit cell displacement across the fault in two 

perpendicular projections along [100] and [001].  The structure of γ-Y2Si2O7 is a two 

layer structure and the fault was found to correspond to the repeat of one layer, with 

an associated rigid body shift in the plane of the boundary.  Image simulations of the 

fault corresponded very well with the experimental images, thus confirming the 

structure model. 

Occasional deviations from the (010) plane are also noted for the stacking faults 

and the resulting steps were analysed and found to lie on various planes.  No single 

preferred step plane could be found and it was concluded that all steps are 

energetically unfavourable and only adopted where necessity forces the fault plane 

away from (010).  Stacking faults were also occasionally observed to end at partial 

dislocations, but their density was very low and there was little evidence for any 

dislocation slip at any time in the preparation of the sample. 

A possible formation mechanism for the faults was proposed, as a consequence of 

the β-Y2Si2O7 to γ-Y2Si2O7 transformation during hot-pressing, but further 

experiments would be needed to confirm both the transformation mechanism and the 

fault formation mechanism. 
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Figure Captions 

 

Figure 1: Representations of the γ-Y2Si2O7 crystal structure for the [100] and [001] 

projections.  The Si2O7 double tetrahedra are clearly seen.  The isolated atoms 

between the tetrahedra are the Y atoms. 

 

Figure 2: Bright field TEM image of the structure of a typical yttrium disilicate grain 

showing stacking faults (SF) and glassy inclusions (G). 

 

Figure 3: [100] zone axis selected area diffraction pattern of γ-Y2Si2O7. 

 

Figure 4: Dark field images of the same stacking fault, SF, recorded with two 

different diffraction conditions, a grain boundary, GB, and a glassy inclusion, G, are 

also shown: a) was recorded with g = 220  and shows all parts of the fault in strong 

contrast; b) was recorded with g = 040 and shows the main part of the fault and the 

step B out of contrast, but step A still shows some weak contrast.  C is a partial 

dislocation at the end of the fault 

 



Figure 5: HRTEM images of the structure of stacking faults recorded using different 

projections with unit cells and dot pairs (which approximately correspond to Y atom 

positions) indicated.  The repeated layer at the stacking fault is clear in both images: 

a) [100] recorded on the JEOL 4000EX at Stuttgart; b) [001] recorded on the JEOL 

3010 at Darmstadt 

 

Figure 6: Models of the stacking fault structure for the [100] and [001] projections. 

 

Figure 7: Image matching for the HRTEM images along a) the [100] and b) the [001] 

projections.  From left to right, average of 10 atomic cells of the experimental image, 

best simulated image, difference plot.  The stacking fault plane is indicated by a 

dotted line in each image. 

 

Figure 8: Dark field TEM image of steps on stacking faults in γ-Y2Si2O7. 

 

Figure 9: Schematic diagram of how different step planes could fit through the unit 

cell. 

 

Figure 10: Schematic diagram of how the beta to gamma transformation could 

proceed. 
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