324 research outputs found

    The form of cosmic string cusps

    Get PDF
    We classify the possible shapes of cosmic string cusps and how they transform under Lorentz boosts. A generic cusp can be brought into a form in which the motion of the cusp tip lies in the plane of the cusp. The cusp whose motion is perpendicular to this plane, considered by some authors, is a special case and not the generic situation. We redo the calculation of the energy in the region where the string overlaps itself near a cusp, which is the maximum energy that can be released in radiation. We take into account the motion of a generic cusp and the resulting Lorentz contraction of the string core. The result is that the energy scales as rL\sqrt {rL} instead of the usual value of r1/3L2/3r^{1/3} L^{2/3}, where rr is the string radius and LL and is the typical length scale of the string. Since r<<Lr << L for cosmological strings, the radiation is strongly suppressed and could not be observed.Comment: 15 pages, ReVTex, 2 postscript figures with eps

    Search for Primordial Black Holes with SGARFACE

    Full text link
    The Short GAmma Ray Front Air Cherenkov Experiment (SGARFACE) uses the Whipple 10 m telescope to search for bursts of γ\gamma rays. SGARFACE is sensitive to bursts with duration from a few ns to \sim20 μ\mus and with γ\gamma-ray energy above 100 MeV. SGARFACE began operating in March 2003 and has collected 2.2 million events during an exposure time of 2267 hours. A search for bursts of γ\gamma rays from explosions of primordial black holes (PBH) was carried out. A Hagedorn-type PBH explosion is predicted to be visible within 60 pc of Earth. Background events were caused by cosmic rays and by atmospheric phenomena and their rejection was accomplished to a large extent using the time-resolved images. No unambiguous detection of bursts of γ\gamma rays could be made as the remaining background events mimic the expected shape and time development of bursts. Upper limits on the PBH explosion rate were derived from the SGARFACE data and are compared to previous and future experiments. We note that a future array of large wide-field air-Cherenkov telescopes equipped with a SGARFACE-like trigger would be able to operate background-free with a 20 to 30 times higher sensitivity for PBH explosions.Comment: 18 pages, 30 figures, accepted by Astroparticle Physics, corrected author list and Section 2.

    Field theory simulation of Abelian-Higgs cosmic string cusps

    Get PDF
    We have performed a lattice field theory simulation of cusps in Abelian-Higgs cosmic strings. The results are in accord with the theory that the portion of the strings which overlaps near the cusp is released as radiation. The radius of the string cores which must touch to produce the evaporation is approximately r=1r = 1 in natural units. In general, the modifications to the string shape due to the cusp may produce many cusps later in the evolution of a string loop, but these later cusps will be much smaller in magnitude and more closely resemble kinks.Comment: 9 pages, RevTeX, 13 figures with eps

    Magnetic polarizability of hadrons from lattice QCD

    Full text link
    We extract the magnetic polarizability from the quadratic response of a hadron's mass shift in progressively small static magnetic fields. The calculation is done on a 24x12x12x24 lattice at a = 0.17 fm with an improved gauge action and the clover quark action. The results are compared to those from experiments and models where available.Comment: 3 pages, 3 figures, contribution to Lattice 2002 (spectrum

    Evolution of Primordial Black Hole Mass Spectrum in Brans-Dicke Theory

    Full text link
    We investigate the evolution of primordial black hole mass spectrum by including both accretion of radiation and Hawking evaporation within Brans-Dicke cosmology in radiation, matter and vacuum-dominated eras. We also consider the effect of evaporation of primordial black holes on the expansion dynamics of the universe. The analytic solutions describing the energy density of the black holes in equilibrium with radiation are presented. We demonstrate that these solutions act as attractors for the system ensuring stability for both linear and nonlinear situations. We show, however, that inclusion of accretion of radiation delays the onset of this equilibrium in all radiation, matter and vacuum-dominated eras.Comment: 18 pages, one figur

    Supersymmetry and primordial black hole abundance constraints

    Get PDF
    We study the consequences of supersymmetry for primordial black hole (PBH) abundance constraints. PBHs with mass less than about 10^{11}g will emit supersymmetric particles when they evaporate. In most models of supersymmetry the lightest of these particles, the lightest supersymmetric particle (LSP), is stable and will hence survive to the present day. We calculate the limit on the initial abundance of PBHs from the requirement that the present day LSP density is less than the critical density. We apply this limit, along with those previously obtained from the effects of PBH evaporation on nucleosynthesis and the present day density of PBHs, to PBHs formed from the collpase of inflationary density perturbations, in the context of supersymmetric inflation models. If the reheat temperature after inflation is low, so as to avoid the overproduction of gravitinos and moduli, then the lightest PBHs which are produced in significant numbers will be evaporating around the present day and there are therefore no constraints from the effects of the evaporation products on nucleosynthesis or from the production of LSPs. We then examine models with a high reheat temperature and a subsequent period of thermal inflation. In these models avoiding the overproduction of LSPs limits the abundance of low mass PBHs which were previously unconstrained. Throughout we incorporate the production, at fixed time, of PBHs with a range of masses, which occurs when critical collapse is taken into account.Comment: 8 pages RevTeX file with 3 figures incorporated (uses RevTeX and epsf). Version to appear in Phys. Rev. D: minor change to calculation and added discussio
    corecore