54 research outputs found

    Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle

    Get PDF
    gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle

    Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity

    Get PDF
    There are over 6 billion vaccine doses administered each year, most containing aluminium-based adjuvants, yet we still do not have a complete understanding of their mechanisms of action. Recent evidence has identified host DNA and downstream sensing as playing a significant role in aluminium adjuvant (aluminium hydroxide) activity. However, the cellular source of this DNA, how it is sensed by the immune system and the consequences of this for vaccination remains unclear. Here we show that the very early injection site reaction is characterised by inflammatory chemokine production and neutrophil recruitment. Intravital imaging demonstrates that the Alum injection site is a focus of neutrophil swarms and extracellular DNA strands. These strands were confirmed as neutrophil extracellular traps due to their sensitivity to DNAse and absence in mice deficient in peptidylarginine deiminase 4. Further studies in PAD4−/− mice confirmed a significant role for neutrophil extracellular trap formation in the adjuvant activity of Alum. By revealing neutrophils recruited to the site of Alum injection as a source of the DNA that is detected by the immune system this study provides the missing link between Alum injection and the activation of DNA sensors that enhance adjuvant activity, elucidating a key mechanism of action for this important vaccine component

    Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection.

    Get PDF
    Chronic infections have been a major topic of investigation in recent years, but the mechanisms that dictate whether or not a pathogen is successfully controlled are incompletely understood. Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent infection in the majority of people in the world. Like other herpesviruses, CMV is well controlled by an effective immune response and induces little, if any, pathology in healthy individuals. However, controlling CMV requires continuous immune surveillance, and thus, CMV is a significant cause of morbidity and death in immune-compromised individuals. T cells in particular play an important role in controlling CMV and both CD4(+) and CD8(+) CMV-specific T cells are essential. These virus-specific T cells persist in exceptionally large numbers during the infection, traffic into peripheral tissues and remain functional, making CMV an attractive vaccine vector for driving CMV-like T cell responses against recombinant antigens of choice. However, the mechanisms by which these T cells persist and differentiate while remaining functional are still poorly understood, and we have no means to promote their development in immune-compromised patients at risk for CMV disease. In this review, I will briefly summarize our current knowledge of CMV-specific CD8(+) T cells and propose a mechanism that may explain their maintenance and preservation of function during chronic infection

    Activated iNKT Cells Promote Memory CD8+ T Cell Differentiation during Viral Infection

    Get PDF
    α-galactosylceramide (α-GalCer) is the prototypical lipid ligand for invariant NKT cells. Recent studies have proposed that α-GalCer is an effective adjuvant in vaccination against a range of immune challenges, however its mechanism of action has not been completely elucidated. A variety of delivery methods have been examined including pulsing dendritic cells with α-GalCer to optimize the potential of α-GalCer. These methods are currently being used in a variety of clinical trials in patients with advanced cancer but cannot be used in the context of vaccine development against pathogens due to their complexity. Using a simple delivery method, we evaluated α-GalCer adjuvant properties, using the mouse model for cytomegalovirus (MCMV). We measured several key parameters of the immune response to MCMV, including inflammation, effector, and central memory CD8+ T cell responses. We found that α-GalCer injection at the time of the infection decreases viral titers, alters the kinetics of the inflammatory response, and promotes both increased frequencies and numbers of virus-specific memory CD8+ T cells. Overall, our data suggest that iNKT cell activation by α-GalCer promotes the development of long-term protective immunity through increased fitness of central memory CD8+ T cells, as a consequence of reduced inflammation

    Non-Hematopoietic Cells in Lymph Nodes Drive Memory CD8 T Cell Inflation during Murine Cytomegalovirus Infection

    Get PDF
    During human and murine cytomegalovirus (MCMV) infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events

    UNC93B1 Mediates Innate Inflammation and Antiviral Defense in the Liver during Acute Murine Cytomegalovirus Infection

    Get PDF
    Antiviral defense in the liver during acute infection with the hepatotropic virus murine cytomegalovirus (MCMV) involves complex cytokine and cellular interactions. However, the mechanism of viral sensing in the liver that promotes these cytokine and cellular responses has remained unclear. Studies here were undertaken to investigate the role of nucleic acid-sensing Toll-like receptors (TLRs) in initiating antiviral immunity in the liver during infection with MCMV. We examined the host response of UNC93B1 mutant mice, which do not signal properly through TLR3, TLR7 and TLR9, to acute MCMV infection to determine whether liver antiviral defense depends on signaling through these molecules. Infection of UNC93B1 mutant mice revealed reduced production of systemic and liver proinflammatory cytokines including IFN-α, IFN-γ, IL-12 and TNF-α when compared to wild-type. UNC93B1 deficiency also contributed to a transient hepatitis later in acute infection, evidenced by augmented liver pathology and elevated systemic alanine aminotransferase levels. Moreover, viral clearance was impaired in UNC93B1 mutant mice, despite intact virus-specific CD8+ T cell responses in the liver. Altogether, these results suggest a combined role for nucleic acid-sensing TLRs in promoting early liver antiviral defense during MCMV infection

    Systemic hematogenous maintenance of memory inflation by MCMV infection.

    Get PDF
    Several low-grade persistent viral infections induce and sustain very large numbers of virus-specific effector T cells. This was first described as a response to cytomegalovirus (CMV), a herpesvirus that establishes a life-long persistent/latent infection, and sustains the largest known effector T cell populations in healthy people. These T cells remain functional and traffic systemically, which has led to the recent exploration of CMV as a persistent vaccine vector. However, the maintenance of this remarkable response is not understood. Current models propose that reservoirs of viral antigen and/or latently infected cells in lymph nodes stimulate T cell proliferation and effector differentiation, followed by migration of progeny to non-lymphoid tissues where they control CMV reactivation. We tested this model using murine CMV (MCMV), a natural mouse pathogen and homologue of human CMV (HCMV). While T cells within draining lymph nodes divided at a higher rate than cells elsewhere, antigen-dependent proliferation of MCMV-specific effector T cells was observed systemically. Strikingly, inhibition of T cell egress from lymph nodes failed to eliminate systemic T cell division, and did not prevent the maintenance of the inflationary populations. In fact, we found that the vast majority of inflationary cells, including most cells undergoing antigen-driven division, had not migrated into the parenchyma of non-lymphoid tissues but were instead exposed to the blood supply. Indeed, the immunodominance and effector phenotype of inflationary cells, both of which are primary hallmarks of memory inflation, were largely confined to blood-localized T cells. Together these results support a new model of MCMV-driven memory inflation in which most immune surveillance occurs in circulation, and in which most inflationary effector T cells are produced in response to viral antigen presented by cells that are accessible to the blood supply

    Investigation of short-term surgical complications in a low-resource, high-volume dog sterilisation clinic in India

    Get PDF
    Abstract Background Surgical sterilisation is currently the method of choice for controlling free-roaming dog populations. However, there are significant logistical challenges to neutering large numbers of dogs in low-resource clinics. The aim of this study was to investigate the incidence of short-term surgical complications in a low-resource sterilisation clinic which did not routinely administer post-operative antibiotics. The medical records of all sterilisation surgeries performed in 2015 at the Worldwide Veterinary Service International Training Centre in Tamil Nadu, India were reviewed (group A) to assess immediate surgical complications. All animals in this group were monitored for at least 24 h post-surgery but were not released until assessed by a veterinarian as having uncomplicated wound healing. In the second part of this study from August to December 2015, 200 free-roaming dogs undergoing sterilisation surgery, were monitored for a minimum of 4-days post-surgery to further assess postoperative complications (group B). Results Surgery related complications were seen in 5.4% (95%CI, 4.5–6.5%) of the 1998 group A dogs monitored for at least 24 h, and in 7.0% (3.9–11.5%) of the 200 group B dogs monitored for 4 days. Major complications were classed as those requiring an intervention and resulted in increased morbidity or mortality. Major complications were seen in 2.8% (2.1–3.6%) and 1.5% (3.1–4.3%) of group A and B, respectively. Minor complications requiring little or no intervention were recorded for 2.6% (1.9–3.4%) for group A and 5.5% (2.8–9.6%) for group B. There was no evidence for a difference in complication rates between the two groups in a multivariate regression model. Conclusion This study demonstrated that high volume, low-resource sterilisation of dogs can be performed with a low incidence of surgical complications and low mortality

    The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm

    Get PDF

    Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection.

    No full text
    CMVs are beta herpesviruses that establish lifelong latent infection of their hosts. Acute infection of C57BL/6 mice with murine CMV elicits a very broad CD8 T cell response, comprising at least 24 epitopes from 18 viral proteins. In contrast, we show here that the CD8 T cell response in chronically infected mice was dominated by only five epitopes. Altogether, four distinct CD8 T cell kinetic patterns were evident. Responses to some epitopes, including M45, which dominates the acute response, contracted sharply after day 7 and developed into stable long-term memory. The response to m139 underwent rapid expansion and contraction, followed by a phase of memory inflation, whereas the response to an M38 epitope did not display any contraction phase. Finally, responses against two epitopes encoded by the immediate early gene IE3 were readily detectable in chronically infected mice but near the limit of detection during acute infection. CD8 T cells specific for the noninflationary M45 epitope displayed a classic central memory phenotype, re-expressing the lymph node homing receptor CD62L and homeostatic cytokine receptors for IL-7 and IL-15, and produced low levels of IL-2. Responses to two inflationary epitopes, m139 and IE3, retained an effector memory surface phenotype (CD62L(low), IL-7Ralpha(-), IL-15Rbeta(-)) and were unable to produce IL-2. We suggest that immunological choices are superimposed on altered viral gene expression profiles to determine immunodominance during chronic murine CMV infection
    • …
    corecore