61 research outputs found

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    The Antimicrobial Peptide Histatin-5 Causes a Spatially Restricted Disruption on the Candida albicans Surface, Allowing Rapid Entry of the Peptide into the Cytoplasm

    Get PDF
    Antimicrobial peptides play an important role in host defense against microbial pathogens. Their high cationic charge and strong amphipathic structure allow them to bind to the anionic microbial cell membrane and disrupt the membrane bilayer by forming pores or channels. In contrast to the classical pore-forming peptides, studies on histatin-5 (Hst-5) have suggested that the peptide is transported into the cytoplasm of Candida albicans in a non-lytic manner, and cytoplasmic Hst-5 exerts its candicidal activities on various intracellular targets, consistent with its weak amphipathic structure. To understand how Hst-5 is internalized, we investigated the localization of FITC-conjugated Hst-5. We find that Hst-5 is internalized into the vacuole through receptor-mediated endocytosis at low extracellular Hst-5 concentrations, whereas under higher physiological concentrations, Hst-5 is translocated into the cytoplasm through a mechanism that requires a high cationic charge on Hst-5. At intermediate concentrations, two cell populations with distinct Hst-5 localizations were observed. By cell sorting, we show that cells with vacuolar localization of Hst-5 survived, while none of the cells with cytoplasmic Hst-5 formed colonies. Surprisingly, extracellular Hst-5, upon cell surface binding, induces a perturbation on the cell surface, as visualized by an immediate and rapid internalization of Hst-5 and propidium iodide or rhodamine B into the cytoplasm from the site using time-lapse microscopy, and a concurrent rapid expansion of the vacuole. Thus, the formation of a spatially restricted site in the plasma membrane causes the initial injury to C. albicans and offers a mechanism for its internalization into the cytoplasm. Our study suggests that, unlike classical channel-forming antimicrobial peptides, action of Hst-5 requires an energized membrane and causes localized disruptions on the plasma membrane of the yeast. This mechanism of cell membrane disruption may provide species-specific killing with minimal damage to microflora and the host and may be used by many other antimicrobial peptides

    Cytokine Profiles in Sepsis Have Limited Relevance for Stratifying Patients in the Emergency Department: A Prospective Observational Study

    Get PDF
    INTRODUCTION: Morbidity, mortality and social cost of sepsis are high. Previous studies have suggested that individual cytokines levels could be used as sepsis markers. Therefore, we assessed whether the multiplex technology could identify useful cytokine profiles in Emergency Department (ED) patients. METHODS: ED patients were included in a single tertiary-care center prospective study. Eligible patients were >18 years and met at least one of the following criteria: fever, suspected systemic infection, ≥ 2 systemic inflammatory response syndrome (SIRS) criteria, hypotension or shock. Multiplex cytokine measurements were performed on serum samples collected at inclusion. Associations between cytokine levels and sepsis were assessed using univariate and multivariate logistic regressions, principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). RESULTS: Among the 126 patients (71 men, 55 women; median age: 54 years [19-96 years]) included, 102 had SIRS (81%), 55 (44%) had severe sepsis and 10 (8%) had septic shock. Univariate analysis revealed weak associations between cytokine levels and sepsis. Multivariate analysis revealed independent association between sIL-2R (p = 0.01) and severe sepsis, as well as between sIL-2R (p = 0.04), IL-1β (p = 0.046), IL-8 (p = 0.02) and septic shock. However, neither PCA nor AHC distinguished profiles characteristic of sepsis. CONCLUSIONS: Previous non-multiparametric studies might have reached inappropriate conclusions. Indeed, well-defined clinical conditions do not translate into particular cytokine profiles. Additional and larger trials are now required to validate the limited interest of expensive multiplex cytokine profiling for staging septic patients

    Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition

    No full text
    The folate and methionine cycles are crucial for biosynthesis of lipids, nucleotides and proteins, and production of the methyl donor S-adenosylmethionine (SAM). 5,10-methylenetetrahydrofolate reductase (MTHFR) represents a key regulatory connection between these cycles, generating 5-methyltetrahydrofolate for initiation of the methionine cycle, and undergoing allosteric inhibition by its end product SAM. Our 2.5 Å resolution crystal structure of human MTHFR reveals a unique architecture, appending the well-conserved catalytic TIM-barrel to a eukaryote-only SAM-binding domain. The latter domain of novel fold provides the predominant interface for MTHFR homo-dimerization, positioning the N-terminal serine-rich phosphorylation region near the C-terminal SAM-binding domain. This explains how MTHFR phosphorylation, identified on 11 N-terminal residues (16 in total), increases sensitivity to SAM binding and inhibition. Finally, we demonstrate that the 25-amino-acid inter-domain linker enables conformational plasticity and propose it to be a key mediator of SAM regulation. Together, these results provide insight into the molecular regulation of MTHFR

    Structural basis for the regulation of human 5,10-methylenetetrahydrofolate reductase by phosphorylation and S-adenosylmethionine inhibition

    No full text
    The folate and methionine cycles are crucial for biosynthesis of lipids, nucleotides and proteins, and production of the methyl donor S-adenosylmethionine (SAM). 5,10-methylenetetrahydrofolate reductase (MTHFR) represents a key regulatory connection between these cycles, generating 5-methyltetrahydrofolate for initiation of the methionine cycle, and undergoing allosteric inhibition by its end product SAM. Our 2.5 Å resolution crystal structure of human MTHFR reveals a unique architecture, appending the well-conserved catalytic TIM-barrel to a eukaryote-only SAM-binding domain. The latter domain of novel fold provides the predominant interface for MTHFR homo-dimerization, positioning the N-terminal serine-rich phosphorylation region near the C-terminal SAM-binding domain. This explains how MTHFR phosphorylation, identified on 11 N-terminal residues (16 in total), increases sensitivity to SAM binding and inhibition. Finally, we demonstrate that the 25-amino-acid inter-domain linker enables conformational plasticity and propose it to be a key mediator of SAM regulation. Together, these results provide insight into the molecular regulation of MTHFR

    Cleaning ability and induced dentin loss of a magnetostrictive ultrasonic instrument at different power settings

    Full text link
    Some laboratory studies have evaluated the oscillation mode of ultrasonic scalers. None of them recorded its influence on calculus removal and quantified dental hard tissue loss. This study aimed to compare the performance of a magnetostrictive ultrasonic instrument at different power settings in vitro in relation to the tip oscillation activity. The oscillation activity of the straight Slimline® insert in the Cavitron® ultrasonic scaling device was analyzed at five different power settings with the help of two laser vibrometers. The performance of this instrument was tested on 60 roots of human single-rooted teeth. Twelve roots each were randomly assigned to be instrumented at a given power setting. Every root was instrumented for 120 s at a standardized instrumentation force of 0.1 ± 0.05 N. In addition, another 30 periodontally involved roots with subgingival calculus were instrumented accordingly to assess the calculus removal potential. The surface characteristics after instrumentation were analyzed under scanning electron microscope. The instrumentation at minimum power setting resulted in an mean increase of the root surface roughness of 0.18 ± 0.28 compared to 0.51 ± 0.48 at maximum power setting (P = 0.0327). The loss of dental hard tissue amounted to 11.37 ± 3.64 at minimum compared to 23.37 ± 15.76 at maximum power (P = 0.0010). The higher the power setting, the more calculus was removed. The values of the latter ranged between 4.04 ± 1.87 and 11.26 ± 4.66 mm² of cleaned dentin surface area (P = 0.0065). At lower power settings, a more favorable relation between cleaning ability, loss of dentine, and surface roughness was found
    corecore