54 research outputs found

    Spatial quantitation of drugs in tissues using liquid extraction surface analysis mass spectrometry imaging

    Get PDF
    Liquid extraction surface analysis mass spectrometry imaging (LESA-MSI) has been shown to be an effective tissue profiling and imaging technique, producing robust and reliable qualitative distribution images of an analyte or analytes in tissue sections. Here, we expand the use of LESA-MSI beyond qualitative analysis to a quantitative analytical technique by employing a mimetic tissue model previously shown to be applicable for MALDI-MSI quantitation. Liver homogenate was used to generate a viable and molecularly relevant control matrix for spiked drug standards which can be frozen, sectioned and subsequently analyzed for the generation of calibration curves to quantify unknown tissue section samples. The effects of extraction solvent composition, tissue thickness and solvent/tissue contact time were explored prior to any quantitative studies in order to optimize the LESA-MSI method across several different chemical entities. The use of a internal standard to normalize regional differences in ionization response across tissue sections was also investigated. Data are presented comparing quantitative results generated by LESA-MSI to LC-MS/MS. Subsequent analysis of adjacent tissue sections using DESI-MSI is also reported

    Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient NOG mice

    Get PDF
    Analyses of energy metabolism in human cancer have been difficult because of rapid turnover of the metabolites and difficulties in reducing time for collecting clinical samples under surgical procedures. Utilization of xenograft transplantation of human-derived colon cancer HCT116 cells in spleens of superimmunodeficient NOD/SCID/IL-2Rγnull (NOG) mice led us to establish an experimental model of hepatic micrometastasis of the solid tumor, whereby analyses of the tissue sections collected by snap-frozen procedures through newly developed microscopic imaging mass spectrometry (MIMS) revealed distinct spatial distribution of a variety of metabolites. To perform intergroup comparison of the signal intensities of metabolites among different tissue sections collected from mice in fed states, we combined matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI–TOF-IMS) and capillary electrophoresis–mass spectrometry (CE–MS), to determine the apparent contents of individual metabolites in serial tissue sections. The results indicated significant elevation of ATP and energy charge in both metastases and the parenchyma of the tumor-bearing livers. To note were significant increases in UDP-N-acetyl hexosamines, and reduced and oxidized forms of glutathione in the metastatic foci versus the liver parenchyma. These findings thus provided a potentially important method for characterizing the properties of metabolic systems of human-derived cancer and the host tissues in vivo

    The impact of provider-initiated (opt-out) HIV testing and counseling of patients with sexually transmitted infection in Cape Town, South Africa: a controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effectiveness of provider-initiated HIV testing and counseling (PITC) for patients with sexually transmitted infection (STI) in resource-constrained settings are of particular concern for high HIV prevalence countries like South Africa. This study evaluated whether the PITC approach increased HIV testing amongst patients with a new episode of sexually transmitted infection, as compared to standard voluntary counseling and testing (VCT) at the primary care level in South Africa, a high prevalence and low resource setting.</p> <p>Methods</p> <p>The design was a pragmatic cluster-controlled trial with seven intervention and 14 control clinics in Cape Town. Nurses in intervention clinics integrated PITC into standard HIV care with few additional resources, whilst lay counselors continued with the VCT approach in control clinics. Routine data were collected for a six-month period following the intervention in 2007, on new STI patients who were offered and who accepted HIV testing. The main outcome measure was the proportion of new STI patients tested for HIV, with secondary outcomes being the proportions who were offered and who declined the HIV test.</p> <p>Results</p> <p>A significantly higher proportion of new STI patients in the intervention group tested for HIV as compared to the control group with (56.4% intervention versus 42.6% control, p = 0.037). This increase was achieved despite a significantly higher proportion intervention group declining testing when offered (26.7% intervention versus 13.5% control, p = 0.0086). Patients were more likely to be offered HIV testing in intervention clinics, where providers offered the HIV test to 76.8% of new STI patients versus 50.9% in the control group (p = 0.0029). There was significantly less variation in the main outcomes across the intervention clinics, suggesting that the intervention also facilitated more consistent performance.</p> <p>Conclusions</p> <p>PITC was successful in three ways: it increased the proportion of new STI patients tested for HIV; it increased the proportion of new STI patients offered HIV testing; and it delivered more consistent performance across clinics. Recommendations are made for increasing the impact and feasibility of PITC in high HIV prevalence and resource-constrained settings. These include more flexible use of clinical and lay staff, and combining PITC with VCT and other community-based approaches to HIV testing.</p> <p>Trial registration</p> <p>Controlled trial ISRCTN93692532</p

    PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics

    Get PDF
    With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer

    MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology

    Get PDF
    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the in situ analysis of tissue sections. MALDI-IMS can determine the distribution of hundreds of unknown compounds in a single measurement and enables the acquisition of cellular expression profiles while maintaining the cellular and molecular integrity. In recent years, a great many advances in the practice of imaging mass spectrometry have taken place, making the technique more sensitive, robust, and ultimately useful. In this review, we focus on the current state of the art of MALDI-IMS, describe basic technological developments for MALDI-IMS of animal and human tissues, and discuss some recent applications in basic research and in clinical settings
    corecore