730 research outputs found
Improving the browsing and cataloguing experience of the District Six museum archives
The LogosFlow system used by the District Six museum to capture and browse artefact collections is neither user-friendly nor intuitive. It was decided that an entirely new system be built and a user-centered design approach be taken to achieve this. Meetings were held with the collections staff, problems with the previous system identified and possible solutions brainstormed. Human-computer interaction methodologies were applied to the user interfaces and the usability of the resulting interfaces was subsequently tested by the staff. It was found that the proposed system was more intuitive and much easier to use than the LogosFlow system and that with the addition of minor extensions it might be a suitable replacement for the current system
Library Support Services at the University of Zambia amid the Covid-19 Pandemic: A SWOT Matrix
When the Coronavirus disease (COVID-19) forced learning institutions in Zambia to abruptly transition to virtual instruction, library services adapted quickly to provide research services, instruction, and access to collections. This paper details how the University of Zambia Library used a SWOT (Strengths, Weaknesses, Opportunities and Threats) Analysis framework to evaluate academic support services of the Library in the wake of the Covid-19 pandemic. Key variables included the library collections, staffing, services and technology. The analysis revealed that strengths comprised qualified staff, technology support and a rich collection of information resources. Weaknesses are in the areas of poor funding and low staffing at paraprofessional and non-professional levels. Opportunities comprised emerging technology and consortia opportunities. Poor funding, competition from other providers and Covid-19 restrictions are threats. It is hoped that this analysis will help define strategic directions important to the library in an emergency or disaster. The study recommends that the library should leverage digital platforms to enhance service delivery
Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators
Spatially confined rigid membranes reorganize their morphology in response to
the imposed constraints. A crumpled elastic sheet presents a complex pattern of
random folds focusing the deformation energy while compressing a membrane
resting on a soft foundation creates a regular pattern of sinusoidal wrinkles
with a broad distribution of energy. Here, we study the energy distribution for
highly confined membranes and show the emergence of a new morphological
instability triggered by a period-doubling bifurcation. A periodic
self-organized focalization of the deformation energy is observed provided an
up-down symmetry breaking, induced by the intrinsic nonlinearity of the
elasticity equations, occurs. The physical model, exhibiting an analogy with
parametric resonance in nonlinear oscillator, is a new theoretical toolkit to
understand the morphology of various confined systems, such as coated materials
or living tissues, e.g., wrinkled skin, internal structure of lungs, internal
elastica of an artery, brain convolutions or formation of fingerprints.
Moreover, it opens the way to new kind of microfabrication design of
multiperiodic or chaotic (aperiodic) surface topography via self-organization.Comment: Submitted for publicatio
Cytologic features of nipple aspirate fluid using an automated non-invasive collection device: a prospective observational study
BACKGROUND: Detection of cytologic atypia in nipple aspirate fluid (NAF) has been shown to be a predictor of risk for development of breast carcinoma. Manual collection of NAF for cytologic evaluation varies widely in terms of efficacy, ease of use, and patient acceptance. We investigated a new automated device for the non-invasive collection of NAF in the office setting. METHODS: A multi-center prospective observational clinical trial involving asymptomatic women designed to assess fluid production, adequacy, safety and patient acceptance of the HALO NAF Collection System (NeoMatrix, Irvine, CA). Cytologic evaluation of all NAF samples was performed using previously described classification categories. RESULTS: 500 healthy women were successfully enrolled. Thirty-eight percent (190/500) produced fluid and 187 were available for cytologic analysis. Cytologic classification of fluid producers showed 50% (93/187) Category 0 (insufficient cellular material), 38% (71/187) Category I (benign non-hyperplastic ductal epithelial cells), 10% (18/187) Category II (benign hyperplastic ductal epithelial cells), 3% (5/187) Category III (atypical ductal epithelial cells) and none were Category IV (unequivocal malignancy). Overall, 19% of the subjects produced NAF with adequate cellularity and 1% were found to have cytologic atypia. CONCLUSION: The HALO system is a simple, safe, rapid, automated method for standardized collection of NAF which is acceptable to patients. Cytologic assessment of HALO-collected NAF showed the ability to detect benign and pre-neoplastic ductal epithelial cells from asymptomatic volunteers
The utility of ductal lavage in breast cancer detection and risk assessment
Ductal lavage (DL) permits noninvasive retrieval of epithelial cells from the breast. Clinical development of this technique has been fueled largely by its potential, as yet unproven, to improve detection of breast cancer and definition of individual risk for development of breast cancer. Early studies demonstrate the feasibility of performing this technique, provide data on cellular yield and findings, and demonstrate the ability to measure molecular markers in DL fluid. However, the sensitivity and specificity of DL for the detection of breast cancer remains unknown, as does the significance of atypia, particularly mild atypia, when found in DL fluid. Although DL appears safe and the device is approved by the US Food and Drug Administration, DL is still best utilized in the setting of clinical trials designed to resolve issues of sensitivity, specificity, and localization
miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity
miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity
Calculating the potential for within-flight transmission of influenza A (H1N1)
Abstract Background Clearly air travel, by transporting infectious individuals from one geographic location to another, significantly affects the rate of spread of influenza A (H1N1). However, the possibility of within-flight transmission of H1N1 has not been evaluated; although it is known that smallpox, measles, tuberculosis, SARS and seasonal influenza can be transmitted during commercial flights. Here we present the first quantitative risk assessment to assess the potential for within-flight transmission of H1N1. Methods We model airborne transmission of infectious viral particles of H1N1 within a Boeing 747 using methodology from the field of quantitative microbial risk assessment. Results The risk of catching H1N1 will essentially be confined to passengers travelling in the same cabin as the source case. Not surprisingly, we find that the longer the flight the greater the number of infections that can be expected. We calculate that H1N1, even during long flights, poses a low to moderate within-flight transmission risk if the source case travels First Class. Specifically, 0-1 infections could occur during a 5 hour flight, 1-3 during an 11 hour flight and 2-5 during a 17 hour flight. However, within-flight transmission could be significant, particularly during long flights, if the source case travels in Economy Class. Specifically, two to five infections could occur during a 5 hour flight, 5-10 during an 11 hour flight and 7-17 during a 17 hour flight. If the aircraft is only partially loaded, under certain conditions more infections could occur in First Class than in Economy Class. During a 17 hour flight, a greater number of infections would occur in First Class than in Economy if the First Class Cabin is fully occupied, but Economy class is less than 30% full. Conclusions Our results provide insights into the potential utility of air travel restrictions on controlling influenza pandemics in the winter of 2009/2010. They show travel by one infectious individual, rather than causing a single outbreak of H1N1, could cause several simultaneous outbreaks. These results imply that, during a pandemic, quarantining passengers who travel in Economy on long-haul flights could potentially be an important control strategy. Notably, our results show that quarantining passengers who travel First Class would be unlikely to be an effective control strategy
Successful oxytocin-assisted nipple aspiration in women at increased risk for breast cancer
The high rate of interval malignancies urges for new screening methods for women at high risk for breast cancer. Nipple aspiration provides direct access to the breast tissue and its DNA, and therefore is a likely candidate, but clinical applications have been limited by the failure to obtain nipple aspiration fluid from most women. We performed oxytocin-assisted nipple aspiration in 90 women at increased risk for breast cancer based on family history or genetic test results (n = 63) and/or previous breast cancer (n = 34). Nipple fluid was obtained from 81/90 women (90%) and bilaterally in 77%. Mean discomfort rating was 0.6 (on a 0–10 scale), which was significantly lower than for mammography or MRI. These findings suggest that a new tool for biomarker detection in oxytocin-assisted nipple fluid of women at high risk for breast cancer is at hand
Nipple aspiration and ductal lavage in women with a germline BRCA1 or BRCA2 mutation
INTRODUCTION: The aim of this study was to collect serial samples of nipple aspirate (NA) and ductal lavage (DL) fluid from women with germline BRCA1/2 mutations in order to create a biorepository for use in identifying biomarkers of breast cancer risk. METHODS: Between March 2003 and February 2005, 52 women with germline BRCA1 or BRCA2 mutations (median age 43 years, range 27 to 65 years) were scheduled for six-monthly NA, DL and venesection. DL was attempted for all NA fluid-yielding (FY) and any non-FY ducts that could be located at each visit. RESULTS: Twenty-seven (52%) women were postmenopausal, predominantly (19/27) from risk reducing bilateral salpingo-oophorectomy (BSO). FY ducts were identified in 60% of all women, 76% of premenopausal women versus 44% of postmenopausal (P = 0.026). Eighty-five percent of women had successful DL. Success was most likely in women with FY ducts (FY 94% versus non-FY 71% (P = 0.049). DL samples were more likely to be cellular if collected from FY ducts (FY 68% versus non-FY 43%; P = 0.037). Total cell counts were associated with FY status (FY median cell count 30,996, range 0 to >1,000,000 versus non-FY median cell count 0, range 0 to 173,577; P = 0.002). Four women (8%) had ducts with severe atypia with or without additional ducts with mild epithelial atypia; seven others had ducts with mild atypia alone (11/52 (21%) in total). Median total cell count was greater from ducts with atypia (105,870, range 1920 to >1,000,000) than those with no atypia (174, 0 to >1,000,000; P ≤ 0.001). CONCLUSION: It is feasible to collect serial NA and DL samples from women at high genetic risk of breast cancer, and we are creating a unique, prospective collection of ductal samples that have the potential to be used for discovery of biomarkers of breast cancer risk and evaluate the ongoing effects of risk reducing BSO. DL cellular atypia was not predictive of a current breast cancer and longer follow up is needed to determine whether atypia is an additional marker of future breast cancer risk in this population already at high genetic risk of breast cancer
A Discontinuous RNA Platform Mediates RNA Virus Replication: Building an Integrated Model for RNA–based Regulation of Viral Processes
Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA–RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA–RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA–based interaction spanning ∼3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes
- …