4,182 research outputs found
Search for associations containing young stars (SACY) VII. New stellar and substellar candidate members in the young associations
The young associations offer us one of the best opportunities to study the
properties of young stellar and substellar objects and to directly image
planets thanks to their proximity (200 pc) and age (5-150 Myr).
However, many previous works have been limited to identifying the brighter,
more active members (1 M) owing to photometric survey
sensitivities limiting the detections of lower mass objects. We search the
field of view of 542 previously identified members of the young associations to
identify wide or extremely wide (1000-100,000 au in physical separation)
companions. We combined 2MASS near-infrared photometry (, , ) with
proper motion values (from UCAC4, PPMXL, NOMAD) to identify companions in the
field of view of known members. We collated further photometry and spectroscopy
from the literature and conducted our own high-resolution spectroscopic
observations for a subsample of candidate members. This complementary
information allowed us to assess the efficiency of our method. We identified 84
targets (45: 0.2-1.3 M, 17: 0.08-0.2 M, 22: 0.08 M)
in our analysis, ten of which have been identified from spectroscopic analysis
in previous young association works. For 33 of these 84, we were able to
further assess their membership using a variety of properties (X-ray emission,
UV excess, H, lithium and K I equivalent widths, radial velocities,
and CaH indices). We derive a success rate of 76-88% for this technique based
on the consistency of these properties. Once confirmed, the targets identified
in this work would significantly improve our knowledge of the lower mass end of
the young associations. Additionally, these targets would make an ideal new
sample for the identification and study of planets around nearby young stars.Comment: 28 pages, 24 figures, accepted in A&
Knowledge Representation of Intelligent Public Services through a Semantic Model
Today citizens make intensive use of mobile communication technology, and they demand to public services providers for complex and sophisticated information. To meet these demands, the governments' services agencies must orchestrate a lot of information from various sources and formats, and deliver them in the data terminals that people commonly use:
computers, net-books, tablets and smart-phones.
To overcome these problems, we propose a deductible model for conceptual representation of the organizational units of the State and his services, based on ontologies designed under the Linked Open Data principles. This model allows automatic extraction of information through machines, that support governmental decision-making processes and giving to citizens a comprehensive access to find and make formalities through intelligent agent.Sociedad Argentina de Informática e Investigación Operativa (SADIO
Knowledge Representation of Intelligent Public Services through a Semantic Model
Today citizens make intensive use of mobile communication technology, and they demand to public services providers for complex and sophisticated information. To meet these demands, the governments' services agencies must orchestrate a lot of information from various sources and formats, and deliver them in the data terminals that people commonly use:
computers, net-books, tablets and smart-phones.
To overcome these problems, we propose a deductible model for conceptual representation of the organizational units of the State and his services, based on ontologies designed under the Linked Open Data principles. This model allows automatic extraction of information through machines, that support governmental decision-making processes and giving to citizens a comprehensive access to find and make formalities through intelligent agent.Sociedad Argentina de Informática e Investigación Operativa (SADIO
Experimental Investigation of the Distribution of Shock Effects in Regolith Impact Ejecta Using an Ejecta Recovery Chamber
Because the mass-flux of solar system meteoroids is concentrated in the approx. 200 microns size range, small-scale impacts play a key role in driving the space weathering of regoliths on airless bodies. Quantifying this role requires improved data linking the mass, density and velocity of the incoming impactors to the nature of the shock effects produced, with particular emphasis on effects, such as production of impact melt and vapor, that drive the optical changes seen in space weathered regoliths. Of particular importance with regard to space weathering is understanding not only the composition of the shock melt created in small-scale impacts, but also how it is partitioned volumetrically between the local impact site and more widely distributed ejecta. To improve the ability of hypervelocity impact experiments to obtain this type of information, we have developed an enclosed sample target chamber with multiple-geometry interior capture cells for in-situ retention of ejecta from granular targets. A key design objective was to select and test capture cell materials that could meet three requirements: 1) Capture ejecta fragments traveling at various trajectories and velocities away from the impact point, while inducing minimal additional damage relative to the primary shock effects; 2) facilitate follow-up characterization of the ejecta either on or in the cell material by analytical SEM, or ex-situ by microprobe, TEM and other methods; and 3) enable the trajectories of the captured and characterized ejecta to be reconstructed relative to the target
The s process in massive stars at low metallicity. Effect of primary N14 from fast rotating stars
The goal of this paper is to analyze the impact of a primary neutron source
on the s-process nucleosynthesis in massive stars at halo metallicity. Recent
stellar models including rotation at very low metallicity predict a strong
production of primary N14. Part of the nitrogen produced in the H-burning shell
diffuses by rotational mixing into the He core where it is converted to Ne22
providing additional neutrons for the s process. We present nucleosynthesis
calculations for a 25 Msun star at [Fe/H] = -3, -4, where in the convective
core He-burning about 0.8 % in mass is made of primary Ne22. The usual weak
s-process shape is changed by the additional neutron source with a peak between
Sr and Ba, where the s-process yields increase by orders of magnitude with
respect to the yields obtained without rotation. Iron seeds are fully consumed
and the maximum production of Sr, Y and Zr is reached. On the other hand, the
s-process efficiency beyond Sr and the ratio Sr/Ba are strongly affected by the
amount of Ne22 and by nuclear uncertainties, first of all by the
Ne22(alpha,n)Mg25 reaction. Finally, assuming that Ne22 is primary in the
considered metallicity range, the s-process efficiency decreases with
metallicity due to the effect of the major neutron poisons Mg25 and Ne22. This
work represents a first step towards the study of primary neutron source effect
in fast rotating massive stars, and its implications are discussed in the light
of spectroscopic observations of heavy elements at halo metallicity.Comment: Accepted for publication in ApJ Letters, 11 pages, 2 figures, 1 tabl
FTIR Analysis of Water in Pyroxene and Plagioclase in ALH 84001 and Nakhlites
Determining the volatile budget of the interior of Mars is crucial for our understanding of that planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Surficial water is evident from spacecraft and rover data in polar caps and the atmosphere, in the presence of river channels, and in the detection of water-bearing minerals. Meteorites, however, are our best candidates for estimating the amount of water present at depth, even if all are crustal samples. The last 10 years have seen a blooming of studies measuring water and halogens in Martian meteorites. The bulk of these studies target phosphate, a typically late-stage phase in the igneous Martian meteorites that potentially would concentrate incompatible element hydrogen (H quantified traditionally as "water", i.e., H2O concentrations in weight) near the end of the crystallization sequence. However, determining the amount of water, F, and Cl in the magma from which a phosphate crystallized from is not straightforward and in most instances not possible. On the other hand, phosphates have turned out to be very useful in identifying hydrothermal processes that could have added water while or after the magma flowed and crystallized. Another caveat of analyzing Martian meteorite phases for water is that shocked phases such as maskelynite and impact melts appear to have incorporated water from the Martian atmosphere, as evidenced by high H isotope ((delta)D) signatures, and therefore their water concentrations cannot be interpreted in terms of deep planetary processes. The best candidates for estimating the water content of the Martian interior have been melt inclusions (glass or amphibole-bearing) which the enclosing mineral (usually olivine) would have prevented from exchanging volatiles with the surroundings after crystallization. Even some of these, however, have high (delta)D, meaning they were affected by H exchange via impact events or with crustal reservoirs or hydrothermal fluids. Here, nominally anhydrous minerals (pyroxene, olivine, plagioclase, or maskelynite) in orthopyroxenite ALH 84001 and selected nakhlites are analyzed for water and major elements, in order to determine 1) whether they contain any water; 2) if they do, what controls its distribution (crystallization, degassing, hydrothermal or impact processes); and 3) if any of these measurements can be used to infer the water contents of the parent magma and their mantle sources. A shock-reverberation experiment was also performed on terrestrial orthopyroxenes (opx) to simulate the heavily shocked conditions of ALH 84001 (> 31 GPa [17])
The On/Off Nature of Star-Planet Interactions
Evidence suggesting an observable magnetic interaction between a star and its
hot Jupiter appears as a cyclic variation of stellar activity synchronized to
the planet's orbit. In this study, we monitored the chromospheric activity of 7
stars with hot Jupiters using new high-resolution echelle spectra collected
with ESPaDOnS over a few nights in 2005 and 2006 from the CFHT. We searched for
variability in several stellar activity indicators (Ca II H, K, the Ca II
infrared triplet, Halpha, and He I). HD 179949 has been observed almost every
year since 2001. Synchronicity of the Ca II H & K emission with the orbit is
clearly seen in four out of six epochs, while rotational modulation with
P_rot=7 days is apparent in the other two seasons. We observe a similar
phenomenon on upsilon And, which displays rotational modulation (P_rot=12 days)
in September 2005, in 2002 and 2003 variations appear to correlate with the
planet's orbital period. This on/off nature of star-planet interaction (SPI) in
the two systems is likely a function of the changing stellar magnetic field
structure throughout its activity cycle. Variability in the transiting system
HD 189733 is likely associated with an active region rotating with the star,
however, the flaring in excess of the rotational modulation may be associated
with its hot Jupiter. As for HD 179949, the peak variability as measured by the
mean absolute deviation for both HD 189733 and tau Boo leads the sub-planetary
longitude by 70 degrees. The tentative correlation between this activity and
the ratio of Mpsini to the planet's rotation period, a quantity proportional to
the hot Jupiter's magnetic moment, first presented in Shkolnik et al. 2005
remains viable. This work furthers the characterization of SPI, improving its
potential as a probe of extrasolar planetary magnetic fields.Comment: Accepted for publication in the Astrophysical Journa
- …