3,539 research outputs found

    Comparable Vδ2 Cell Functional Characteristics in Virally Suppressed People Living with HIV and Uninfected Individuals.

    Get PDF
    Crosstalk between innate and adaptive pathways is a critical component to developing an effective, lasting immune response. Among natural effector cells, innate-like γδ T cells promote immunity by facilitating communication between the two compartments and exerting cytotoxic effector functions. Dysregulation of γδ T cell populations is a byproduct of primary Humanimmunodeficiency virus (HIV) infection. This is most pronounced in the depletion and loss of function within cells expressing a Vγ9Vδ2 TCR (Vδ2 cells). Whether or not prolonged viral suppression mediated by antiretroviral therapy (ART) can reverse these effects has yet to be determined. In this study, we present evidence of similar Vδ2 cell functional responses within a cohort of people living with HIV (PLWH) that has been stably suppressed for >1 year and uninfected donors. Through the use of aminobisphosphonate drugs, we were able to generate a comprehensive comparison between ex vivo and expanded Vδ2 cells within each group. Both groups had largely similar compositions of memory and effector phenotypes, post-expansion TCR repertoire diversity, and cytotoxic capabilities. Our findings support the notion that ART promotes the recovery of Vδ2 polyfunctionality and provides insight for strategies aiming to reconstitute the full immune response after infection with HIV

    A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies

    Get PDF
    A promising direction in drug development is to exploit the ability of natural killer cells to kill antibody-labeled target cells. Monoclonal antibodies and drugs designed to elicit this effect typically bind cell-surface epitopes that are overexpressed on target cells but also present on other cells. Thus it is important to understand adhesion of cells by antibodies and similar molecules. We present an equilibrium model of such adhesion, incorporating heterogeneity in target cell epitope density and epitope immobility. We compare with experiments on the adhesion of Jurkat T cells to bilayers containing the relevant natural killer cell receptor, with adhesion mediated by the drug alefacept. We show that a model in which all target cell epitopes are mobile and available is inconsistent with the data, suggesting that more complex mechanisms are at work. We hypothesize that the immobile epitope fraction may change with cell adhesion, and we find that such a model is more consistent with the data. We also quantitatively describe the parameter space in which binding occurs. Our results point toward mechanisms relating epitope immobility to cell adhesion and offer insight into the activity of an important class of drugs.Comment: 13 pages, 5 figure

    On the Cause of Recent Variations in Lower Stratospheric Ozone

    Get PDF
    We use height‐resolved and total column satellite observations and 3‐D chemical transport model simulations to study stratospheric ozone variations during 1998–2017 as ozone‐depleting substances decline. In 2017 extrapolar lower stratospheric ozone displayed a strong positive anomaly following much lower values in 2016. This points to large interannual variability rather than an ongoing downward trend, as reported recently by Ball et al. (2018, https://doi.org/10.5194/acp‐18‐1379‐2018). The observed ozone variations are well captured by the chemical transport model throughout the stratosphere and are largely driven by meteorology. Model sensitivity experiments show that the contribution of past trends in short‐lived chlorine species to the ozone changes is small. Similarly, the potential impact of modest trends in natural brominated short‐lived species is small. These results confirm the important role that atmospheric dynamics plays in controlling ozone in the extrapolar lower stratosphere on multiannual time scales and the continued importance of monitoring ozone profiles as the stratosphere changes

    Identification of an allosteric binding site on the human glycine transporter, GlyT2, for bioactive lipid analgesics

    Full text link
    © Mostyn et al. The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2. This study identifies a novel extracellular allosteric modulator site formed by a crevice between transmembrane domains 5, 7, and 8, and extracellular loop 4 of GlyT2. Knowledge of this site could be exploited further in the development of drugs to treat pain, and to identify other allosteric modulators of the SLC6 family of transporters

    TbPIF5 Is a Trypanosoma brucei Mitochondrial DNA Helicase Involved in Processing of Minicircle Okazaki Fragments

    Get PDF
    Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5′ to 3′ DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments

    Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In candidate-gene association studies of single nucleotide polymorphisms (SNPs), multilocus analyses are frequently of high dimensionality when considering haplotypes or haplotype pairs (diplotypes) and differing modes of expression. Often, while candidate genes are selected based on their biological involvement in a given pathway, little is known about the functionality of SNPs to guide association studies. Investigators face the challenge of exploring multiple SNP models to elucidate which variants, independently or in combination, might be associated with a disease of interest. A data mining module, hapConstructor (freely-available in Genie software) performs systematic construction and association testing of multilocus genotype data in a Monte Carlo framework. Our objective was to assess its utility to guide statistical analyses of haplotypes within a candidate region (or combined genotypes across candidate genes) beyond that offered by a standard logistic regression approach.</p> <p>Methods</p> <p>We applied the hapConstructor method to a multilocus investigation of candidate genes involved in pro-inflammatory cytokine IL6 production, <it>IKBKB</it>, <it>IL6</it>, and <it>NFKB1 </it>(16 SNPs total) hypothesized to operate together to alter colorectal cancer risk. Data come from two U.S. multicenter studies, one of colon cancer (1,556 cases and 1,956 matched controls) and one of rectal cancer (754 cases and 959 matched controls).</p> <p>Results</p> <p>HapConstrcutor enabled us to identify important associations that were further analyzed in logistic regression models to simultaneously adjust for confounders. The most significant finding (nominal <it>P </it>= 0.0004; false discovery rate <it>q </it>= 0.037) was a combined genotype association across <it>IKBKB </it>SNP rs5029748 (1 or 2 variant alleles), <it>IL6 </it>rs1800797 (1 or 2 variant alleles), and <it>NFKB1 </it>rs4648110 (2 variant alleles) which conferred an ~80% decreased risk of colon cancer.</p> <p>Conclusions</p> <p>Strengths of hapConstructor were: systematic identification of multiple loci within and across genes important in CRC risk; false discovery rate assessment; and efficient guidance of subsequent logistic regression analyses.</p

    Neural Activity Patterns in Response to Interspecific and Intraspecific Variation in Mating Calls in the Túngara Frog

    Get PDF
    During mate choice, individuals must classify potential mates according to species identity and relative attractiveness. In many species, females do so by evaluating variation in the signals produced by males. Male túngara frogs (Physalaemus pustulosus) can produce single note calls (whines) and multi-note calls (whine-chucks). While the whine alone is sufficient for species recognition, females greatly prefer the whine-chuck when given a choice.To better understand how the brain responds to variation in male mating signals, we mapped neural activity patterns evoked by interspecific and intraspecific variation in mating calls in túngara frogs by measuring expression of egr-1. We predicted that egr-1 responses to conspecific calls would identify brain regions that are potentially important for species recognition and that at least some of those brain regions would vary in their egr-1 responses to mating calls that vary in attractiveness. We measured egr-1 in the auditory brainstem and its forebrain targets and found that conspecific whine-chucks elicited greater egr-1 expression than heterospecific whines in all but three regions. We found no evidence that preferred whine-chuck calls elicited greater egr-1 expression than conspecific whines in any of eleven brain regions examined, in contrast to predictions that mating preferences in túngara frogs emerge from greater responses in the auditory system.Although selectivity for species-specific signals is apparent throughout the túngara frog brain, further studies are necessary to elucidate how neural activity patterns vary with the attractiveness of conspecific mating calls

    A picogram and nanometer scale photonic crystal opto-mechanical cavity

    Get PDF
    We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure

    A Horizon Scan of research priorities to inform policies aimed at reducing the harm of plastic pollution to biota

    Get PDF
    Plastic pollution in the oceans is a priority environmental issue. The recent increase in research on the topic, coupled with growing public awareness, has catalyzed policymakers around the world to identify and implement solutions that minimize the harm caused by plastic pollution. To aid and coordinate these efforts, we surveyed experts with scientific experience identified through their peer-reviewed publications. We asked experts about the most pressing research questions relating to how biota interact with plastic pollution that in turn can inform policy decisions and research agendas to best contribute to understanding and reducing the harm of plastic pollution to biota. We used a modified Horizon Scan method that first used a subgroup of experts to generate 46 research questions on aquatic biota and plastics, and then conducted an online survey of researchers globally to prioritize questions in terms of their importance to inform policy development. One hundred and fifteen experts from 29 countries ranked research questions in six themes. The questions were ranked by urgency, indicating which research should be addressed immediately, which can be addressed later, and which are of limited relevance to inform action on plastics as an environmental pollutant. We found that questions relating to the following four themes were the most commonly top-ranked research priorities: (i) sources, circulation and distribution of plastics, (ii) type of harm from plastics, (iii) detection of ingested plastics and the associated problems, and (iv) related economies and policy to ingested plastics. While there are many research questions on the topic of impacts of plastic pollution on biota that could be funded and investigated, our results focus collective priorities in terms of research that experts believe will inform effective policy and on-the-ground conservation.© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/

    Eye Movements Predict Recollective Experience

    Get PDF
    Previously encountered stimuli can bring to mind a vivid memory of the episodic context in which the stimulus was first experienced ("remembered'' stimuli), or can simply seem familiar ("known'' stimuli). Past studies suggest that more attentional resources are required to encode stimuli that are subsequently remembered than known. However, it is unclear if the attentional resources are distributed differently during encoding and recognition of remembered and known stimuli. Here, we record eye movements while participants encode photos, and later while indicating whether the photos are remembered, known or new. Eye fixations were more clustered during both encoding and recognition of remembered photos relative to known photos. Thus, recognition of photos that bring to mind a vivid memory for the episodic context in which they were experienced is associated with less distributed overt attention during encoding and recognition. The results suggest that remembering is related to encoding of a few distinct details of a photo rather than the photo as a whole. In turn, during recognition remembering may be trigged by enhanced memory for the salient details of the photos
    corecore