435 research outputs found

    The complete mitochondrial genome of the foodborne parasitic pathogen Cyclospora cayetanensis

    Get PDF
    Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes

    Shape - but Not Size - Codivergence between Male and Female Copulatory Structures in Onthophagus Beetles

    Get PDF
    Genitalia are among the fastest evolving morphological traits in arthropods. Among the many hypotheses aimed at explaining this observation, some explicitly or implicitly predict concomitant male and female changes of genital traits that interact during copulation (i.e., lock and key, sexual conflict, cryptic female choice and pleiotropy). Testing these hypotheses requires insights into whether male and female copulatory structures that physically interact during mating also affect each other's evolution and patterns of diversification. Here we compare and contrast size and shape evolution of male and female structures that are known to interact tightly during copulation using two model systems: (a) the sister species O. taurus (1 native, 3 recently established populations) and O. illyricus, and (b) the species-complex O. fracticornis-similis-opacicollis. Partial Least Squares analyses indicated very little to no correlation between size and shape of copulatory structures, both in males and females. Accordingly, comparing shape and size diversification patterns of genitalia within each sex showed that the two components diversify readily - though largely independently of each other - within and between species. Similarly, comparing patterns of divergence across sexes showed that relative sizes of male and female copulatory organs diversify largely independent of each other. However, performing this analysis for genital shape revealed a signature of parallel divergence. Our results therefore suggest that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes. Furthermore, our results suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame. Results are discussed in the framework of the hypotheses that assume or predict concomitant evolutionary changes in male and female copulatory organs

    The Effect of Genetic and Environmental Variation on Genital Size in Male Drosophila: Canalized but Developmentally Unstable

    Get PDF
    The genitalia of most male arthropods scale hypoallometrically with body size, that is they are more or less the same size across large and small individuals in a population. Such scaling is expected to arise when genital traits show less variation than somatic traits in response to factors that generate size variation among individuals in a population. Nevertheless, there have been few studies directly examining the relative sensitivity of genital and somatic traits to factors that affect their size. Such studies are key to understanding genital evolution and the evolution of morphological scaling relationships more generally. Previous studies indicate that the size of genital traits in male Drosophila melanogaster show a relatively low response to variation in environmental factors that affect trait size. Here we show that the size of genital traits in male fruit flies also exhibit a relatively low response to variation in genetic factors that affect trait size. Importantly, however, this low response is only to genetic factors that affect body and organ size systemically, not those that affect organ size autonomously. Further, we show that the genital traits do not show low levels of developmental instability, which is the response to stochastic developmental errors that also influence organ size autonomously. We discuss these results in the context of current hypotheses on the proximate and ultimate mechanisms that generate genital hypoallometry

    Evolution of Robustness to Noise and Mutation in Gene Expression Dynamics

    Get PDF
    Phenotype of biological systems needs to be robust against mutation in order to sustain themselves between generations. On the other hand, phenotype of an individual also needs to be robust against fluctuations of both internal and external origins that are encountered during growth and development. Is there a relationship between these two types of robustness, one during a single generation and the other during evolution? Could stochasticity in gene expression have any relevance to the evolution of these robustness? Robustness can be defined by the sharpness of the distribution of phenotype; the variance of phenotype distribution due to genetic variation gives a measure of `genetic robustness' while that of isogenic individuals gives a measure of `developmental robustness'. Through simulations of a simple stochastic gene expression network that undergoes mutation and selection, we show that in order for the network to acquire both types of robustness, the phenotypic variance induced by mutations must be smaller than that observed in an isogenic population. As the latter originates from noise in gene expression, this signifies that the genetic robustness evolves only when the noise strength in gene expression is larger than some threshold. In such a case, the two variances decrease throughout the evolutionary time course, indicating increase in robustness. The results reveal how noise that cells encounter during growth and development shapes networks' robustness to stochasticity in gene expression, which in turn shapes networks' robustness to mutation. The condition for evolution of robustness as well as relationship between genetic and developmental robustness is derived through the variance of phenotypic fluctuations, which are measurable experimentally.Comment: 25 page

    Phenotypic Plasticity and Contemporary Evolution in Introduced Populations: Evidence from Translocated Populations of White Sands Pupfish (Cyrpinodon tularosa)

    Get PDF
    Contemporary evolution has been shown in a few studies to be an important component of colonization ability, but seldom have researchers considered whether phenotypic plasticity facilitates directional evolution from the invasion event. In the current study, we evaluated body shape divergence of the New Mexico State-threatened White Sands pupfish (Cyprinodon tularosa) that were introduced to brackish, lacustrine habitats at two different time in the recent past (approximately 30 years and 1 year previously) from the same source population (saline river environment). Pupfish body shape is correlated with environmental salinity: fish from saline habitats are characterized by slender body shapes, whereas fish from fresher, yet brackish springs are deep-bodied. In this study, lacustrine populations consisted of an approximately 30-year old population and several 1-year old populations, all introduced from the same source. The body shape divergence of the 30-year old population was significant and greater than any of the divergences of the 1-year old populations (which were for the most part not significant). Nonetheless, all body shape changes exhibited body deepening in less saline environments. We conclude that phenotypic plasticity potentially facilitates directional evolution of body deepening for introduced pupfish populations

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Integrating complex genomic datasets and tumour cell sensitivity profiles to address a 'simple' question: which patients should get this drug?

    Get PDF
    It is becoming increasingly apparent that cancer drug therapies can only reach their full potential through appropriate patient selection. Matching drugs and cancer patients has proven to be a complex challenge, due in large part to the substantial molecular heterogeneity inherent to human cancers. This is not only a major hurdle to the improvement of the use of current treatments but also for the development of novel therapies and the ability to steer them to the relevant clinical indications. In this commentary we discuss recent studies from Kuo et al., published this month in BMC Medicine, in which they used a panel of cancer cell lines as a model for capturing patient heterogeneity at the genomic and proteomic level in order to identify potential biomarkers for predicting the clinical activity of a novel candidate chemotherapeutic across a patient population. The findings highlight the ability of a 'systems approach' to develop a better understanding of the properties of novel candidate therapeutics and to guide clinical testing and application

    Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells

    Get PDF
    ORP5 and ORP8, members of the oxysterol-binding protein (OSBP)-related proteins (ORP) family, are endoplasmic reticulum membrane proteins implicated in lipid trafficking. ORP5 and ORP8 are reported to localize to endoplasmic reticulum-plasma membrane junctions via binding to phosphatidylinositol-4-phosphate (PtdIns(4)P), and act as a PtdIns(4)P/phosphatidylserine counter exchanger between the endoplasmic reticulum and plasma membrane. Here we provide evidence that the pleckstrin homology domain of ORP5/8 via PtdIns(4,5)P 2, and not PtdIns(4)P binding mediates the recruitment of ORP5/8 to endoplasmic reticulum-plasma membrane contact sites. The OSBP-related domain of ORP8 can extract and transport multiple phosphoinositides in vitro, and knocking down both ORP5 and ORP8 in cells increases the plasma membrane level of PtdIns(4,5)P 2 with little effect on PtdIns(4)P. Overall, our data show, for the first time, that phosphoinositides other than PtdIns(4)P can also serve as co-exchangers for the transport of cargo lipids by ORPs.ORP5/8 are endoplasmic reticulum (ER) membrane proteins implicated in lipid trafficking that localize to ER-plasma membrane (PM) contacts and maintain membrane homeostasis. Here the authors show that PtdIns(4,5)P 2 plays a critical role in the targeting and function of ORP5/8 at the PM
    corecore