97 research outputs found

    Preparation, characterization and in vitro study of biocompatible fibroin hydrogel

    Get PDF
    In this study, Bombyx mori silk based hydrogels were prepared and their biorelevant properties like physical, chemical and thermal properties were studied. Firstly, silk fibroin aqueous solution was prepared and the molecular weight of fibroin protein was determined followed by particle size analysis for the confirmation of study. Silk fibroin hydrogels were prepared by treating a 12% (w/v) silk fibroin aqueous solution at 4°C (thermgel) and lyophilized. The swelling and thermorheological behaviour of fibroin hydrogels were studied. The morphology and crystalline structure of lyophilized hydrogels were investigated by scanning electron microscopy (SEM) and wide-angle diffractometry, respectively while the surface functional groups were analyzed by FT-IR. The thermal behavior was also studied by means of differential scanning calorimetry and gravimetric method. The cytocompatibility of the hydrogels was evaluated through three-dimensional culture with human peripheral blood mononuclear cells. Lyophilized fibroin gel of high strength and high thermal stability were obtained. The β-crystelline structure of lyophilized fibroin hydrogel has shown excellent swelling capacity to mimic the living tissues. The surfaces of these hydrogels were found supporting to cell adherence and proliferation. hMNCs could survive and proliferate in the gel within 3 weeks, and the gel had good cytocompatibility. It was concluded that fibroin hydrogel not only has interpenetrating network structure but also has good cytocompatibility and could be used as injectable scaffolds able to promote in situ bone regeneration.Key words: Fibroin, hydrogel, tissue engineering, sodium dodecyl sulfate polyacrylamide gel electrophoresis, scanning electron microscopy, cytocompatibility

    Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Problems associated with resistant mosquitoes and the effects on non-target species by chemicals, evoke a reason to find alternative methods to control mosquitoes, like the use of natural predators. In this regard, aquatic coleopterans have been explored less compared to other insect predators. In the present study, an evaluation of the role of the larvae of <it>Acilius sulcatus </it>Linnaeus 1758 (Coleoptera: Dytiscidae) as predator of mosquito immatures was made in the laboratory. Its efficacy under field condition was also determined to emphasize its potential as bio-control agent of mosquitoes.</p> <p>Methods</p> <p>In the laboratory, the predation potential of the larvae of <it>A. sulcatus </it>was assessed using the larvae of <it>Culex quinquefasciatus </it>Say 1823 (Diptera: Culicidae) as prey at varying predator and prey densities and available space. Under field conditions, the effectiveness of the larvae of <it>A. sulcatus </it>was evaluated through augmentative release in ten cemented tanks hosting immatures of different mosquito species at varying density. The dip density changes in the mosquito immatures were used as indicator for the effectiveness of <it>A. sulcatus </it>larvae.</p> <p>Results</p> <p>A single larva of <it>A. sulcatus </it>consumed on an average 34 IV instar larvae of <it>Cx. quinquefasciatus </it>in a 24 h period. It was observed that feeding rate of <it>A. sulcatus </it>did not differ between the light-on (6 a.m. – 6 p.m.), and dark (6 p.m. – 6 a.m.) phases, but decreased with the volume of water i.e., space availability. The prey consumption of the larvae of <it>A. sulcatus </it>differed significantly (P < 0.05) with different prey, predator and volume combinations, revealed through univariate ANOVA. The field study revealed a significant decrease (p < 0.05) in larval density of different species of mosquitoes after 30 days from the introduction of <it>A. sulcatus </it>larvae, while with the withdrawal, a significant increase (p < 0.05) in larval density was noted indicating the efficacy of <it>A. sulcatus </it>in regulating mosquito immatures. In the control tanks, mean larval density did not differ (p > 0.05) throughout the study period.</p> <p>Conclusion</p> <p>the larvae of the dytiscid beetle <it>A. sulcatus </it>proved to be an efficient predator of mosquito immatures and may be useful in biocontrol of medically important mosquitoes.</p

    MUC5B levels in submandibular gland saliva of patients treated with radiotherapy for head-and-neck cancer: A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The salivary mucin MUC5B, present in (sero)mucous secretions including submandibular gland (SMG) saliva, plays an important role in the lubrication of the oral mucosa and is thought to be related to the feeling of dry mouth. We investigated if MUC5B levels in SMG saliva could distinguish between the presence or absence of severe dry mouth complaints 12 months after radiotherapy (RT) for head-and-neck cancer (HNC).</p> <p>Findings</p> <p>Twenty-nine HNC patients with a residual stimulated SMG secretion rate of ≥0.2 ml/10 min at 12 months after RT were analyzed. MUC5B (in U; normalized to 1) and total protein levels (mg/ml) were measured in SMG saliva at baseline and 12 months after RT using ELISA and BCA protein assay, respectively. Overall, median MUC5B levels decreased after RT from 0.12 to 0.03 U (<it>p</it> = 0.47). Patients were dichotomized into none/mild xerostomia (n = 12) and severe xerostomia (n = 17) based on a questionnaire completed at 12 months. SMG and whole saliva flow rates decreased after RT but were comparable in both groups. The median MUC5B level was higher in patients with no or mild xerostomia compared to patients with severe xerostomia (0.14 vs 0.01 U, <it>p</it> = 0.22). Half of the patients with severe xerostomia had no detectable MUC5B at 12 months after RT. No differences in total protein levels were observed.</p> <p>Conclusions</p> <p>Qualitative saliva parameters like MUC5B need further investigation in RT-induced xerostomia. This pilot study showed a trend towards lower MUC5B levels in the SMG saliva of patients with severe xerostomia 12 months after RT for HNC.</p

    The Phrenic Component of Acute Schizophrenia – A Name and Its Physiological Reality

    Get PDF
    Decreased heart rate variability (HRV) was shown for unmedicated patients with schizophrenia and their first-degree relatives, implying genetic associations. This is known to be an important risk factor for increased cardiac mortality in other diseases. The interaction of cardio-respiratory function and respiratory physiology has never been investigated in the disease although it might be closely related to the pattern of autonomic dysfunction. We hypothesized that increased breathing rates and reduced cardio-respiratory coupling in patients with acute schizophrenia would be associated with low vagal function. We assessed variability of breathing rates and depth, HRV and cardio-respiratory coupling in patients, their first-degree relatives and controls at rest. Control subjects were investigated a second time by means of a stress task to identify stress-related changes of cardio-respiratory function. A total of 73 subjects were investigated, consisting of 23 unmedicated patients, 20 healthy, first-degree relatives and 30 control subjects matched for age, gender, smoking and physical fitness. The LifeShirt®, a multi-function ambulatory device, was used for data recording (30 minutes). Patients breathe significantly faster (p<.001) and shallower (p<.001) than controls most pronouncedly during exhalation. Patients' breathing is characterized by a significantly increased amount of middle- (p<.001), high- (p<.001), and very high frequency fluctuations (p<.001). These measures correlated positively with positive symptoms as assessed by the PANSS scale (e.g., middle frequency: r = 521; p<.01). Cardio-respiratory coupling was reduced in patients only, while HRV was decreased in patients and healthy relatives in comparison to controls. Respiratory alterations might reflect arousal in acutely ill patients, which is supported by comparable physiological changes in healthy subjects during stress. Future research needs to further investigate these findings with respect to their physiological consequences for patients. These results are invaluable for researchers studying changes of biological signals prone to the influence of breathing rate and rhythm (e.g., functional imaging)

    Stretching Actin Filaments within Cells Enhances their Affinity for the Myosin II Motor Domain

    Get PDF
    To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli

    Activation of CO and CO2 on homonuclear boron bonds of fullerene-like BN cages: first principles study

    Get PDF
    Using density functional theory we investigate the electronic and atomic structure of fullerene-like boron nitride cage structures. The pentagonal ring leads to the formation of homonuclear bonds. The homonuclear bonds are also found in other BN structures having pentagon line defect. The calculated thermodynamics and vibrational spectra indicated that, among various stable configurations of BN-60 cages, the higher number of homonuclear N-N bonds and lower B:N ratio can result in the more stable structure. The homonuclear bonds bestow the system with salient catalytic properties that can be tuned by modifying the B atom bonding environment. We show that homonuclear B-B (B2) bonds can anchor both oxygen and CO molecules making the cage to be potential candidates as catalyst for CO oxidation via Langmuir-Hinshelwood (LH) mechanism. Moreover, the B-B-B (B3) bonds are reactive enough to capture, activate and hydrogenate CO2 molecules to formic acid. The observed trend in reactivity, viz B3 &gt; B2 &gt; B1 is explained in terms of the position of the boron defect state relative to the Fermi level.close0
    corecore