283 research outputs found

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila

    Get PDF
    Upper ocean variability at different stages in the evolution of the tropical cyclones Nargis and Laila is evaluated over the Bay of Bengal (BoB) during May 2008 and May 2010 respectively. Nargis initially developed on 24 April 2008; intensified twice on 27–28 April and 1 May, and eventually made landfall at Myanmar on 2 May 2008. Laila developed over the western BoB in May 2010 and moved westward towards the east coast of India. Data from the Argo Profiling floats, the Research Moored Array for African–Asian–Australian Monsoon Analysis and prediction (RAMA), and various satellite products are analyzed to evaluate upper ocean variability due to Nargis and Laila. The analysis reveals pre-conditioning of the central BoB prior to Nargis with warm (>30 °C) Sea Surface Temperature (SST), low (<33 psu) Sea Surface Salinity (SSS) and shallow (<30 m) mixed layer depths during March–April 2008. Enhanced ocean response to the right of the storm track due to Nargis includes a large SST drop by ∼1.76 °C, SSS increase up to 0.74 psu, mixed layer deepening of 32 m, shoaling of the 26 °C isotherm by 36 m and high net heat loss at the sea surface. During Nargis, strong inertial currents (up to 0.9 ms−1) were generated to the right of storm track as measured at a RAMA buoy located at 15 °N, 90 °E, producing strong turbulent mixing that lead to the deepening of mixed layer. This mixing facilitated entrainment of cold waters from as deep as 75 m and, together with net heat loss at sea surface and cyclone-induced subsurface upwelling, contributed to the observed SST cooling in the wake of the storm. A similar upper ocean response occurs during Laila, though it was a significantly weaker storm than Nargi

    Ocean- Atmosphere Interactions During Cyclone Nargis

    Get PDF
    Cyclone Nargis (Figure 1a) made landfall in Myanmar (formerly Burma) on 2 May 2008 with sustained winds of approximately 210 kilometers per hour, equivalent to a category 3– 4 hurricane. In addition, Nargis brought approximately 600 millimeters of rain and a storm surge of 3– 4 meters to the low- lying and densely populated Irrawaddy River delta. In its wake, the storm left an estimated 130,000 dead or missing and more than $10 billion in economic losses. It was the worst natural disaster to strike the Indian Ocean region since the 26 December 2004 tsunami and the worst recorded natural disaster ever to affect Myanmar

    Fourth clivar workshop on the evaluation of ENSO processes in climate models: ENSO in a changing climate

    Get PDF
    n/aThe organizers acknowledge the generous support of the World Climate Research Programme/CLIVAR, the Centre National de la Recherche Scientifique–Institut National des Sciences de l’Univers (CNRS-INSU), the LabEx L-IPSL, and Sorbonne Universités and wish to thank Lei Han, from the International CLIVAR Global Project Office in Qingdao, China, for his invaluable help in organizing this workshop

    Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats

    Get PDF
    New diagnostics of the Madden-Julian Oscillation (MJO) cycle in ocean temperature and, for the first time, salinity are presented. The MJO composites are based on 4 years of gridded Argo float data from 2003 to 2006, and extend from the surface to 1,400 m depth in the tropical Indian and Pacific Oceans. The MJO surface salinity anomalies are consistent with precipitation minus evaporation fluxes in the Indian Ocean, and with anomalous zonal advection in the Pacific. The Argo sea surface temperature and thermocline depth anomalies are consistent with previous studies using other data sets. The near-surface density changes due to salinity are comparable to, and partially offset, those due to temperature, emphasising the importance of including salinity as well as temperature changes in mixed-layer modelling of tropical intraseasonal processes. The MJO-forced equatorial Kelvin wave that propagates along the thermocline in the Pacific extends down into the deep ocean, to at least 1,400 m. Coherent, statistically significant, MJO temperature and salinity anomalies are also present in the deep Indian Ocean

    Strengthened Indonesian throughflow drives decadal warming in the Southern Indian Ocean

    Get PDF
    Remarkable warming of the Southern Indian Ocean during the recent two decades is assessed using a heat budget analysis based on the Estimating the Circulation and Climate of the Ocean version 4 release 3 model results. The annual mean temperature averaged in the upper-700m Southern Indian Ocean during 1998-2015 has experienced significant warming at a rate of 1.03×10-2℃/yr. A heat budget analysis indicates that the increase is mostly driven by decreased cooling from net air-sea heat flux and increased warming from heat advection. Increased ITF advection is the largest contributor to warming the upper 700m of the Southern Indian Ocean, while the reduction of surface turbulent heat flux is of secondary importance. These results expand our understanding of the decadal heat balance in the Indian Ocean and of Indo-Pacific decadal climate variability

    Sublittoral soft bottom communities and diversity of Mejillones Bay in northern Chile (Humboldt Current upwelling system)

    Get PDF
    The macrozoobenthos of Mejillones Bay (23°S; Humboldt Current) was quantitatively investigated over a 7-year period from austral summer 1995/1996 to winter 2002. About 78 van Veen grab samples taken at six stations (5, 10, 20 m depth) provided the basis for the analysis of the distribution of 60 species and 28 families of benthic invertebrates, as well as of their abundance and biomass. Mean abundance (2,119 individuals m-2) was in the same order compared to a previous investigation; mean biomass (966 g formalin wet mass m-2), however, exceeded prior estimations mainly due to the dominance of the bivalve Aulacomya ater. About 43% of the taxa inhabited the complete depth range. Mean taxonomic Shannon diversity (H', Log e) was 1.54 ± 0.58 with a maximum at 20 m (1.95 ± 0.33); evenness increased with depth. The fauna was numerically dominated by carnivorous gastropods, polychaetes and crustaceans (48%). About 15% of the species were suspensivorous, 13% sedimentivorous, 11% detritivorous, 7% omnivorous and 6% herbivorous. Cluster analyses showed a significant difference between the shallow and the deeper stations. Gammarid amphipods and the polychaete family Nephtyidae characterized the 5-mzone, the molluscs Aulacomya ater, Mitrella unifasciata and gammarids the intermediate zone, while the gastropod Nassarius gayi and the polychaete family Nereidae were most prominent at the deeper stations. The communities of the three depth zones did not appear to be limited by hypoxia during non-El Niño conditions. Therefore, no typical change in community structure occurred during El Niño 1997–1998, in contrast to what was observed for deeper faunal assemblages and hypoxic bays elsewhere in the coastal Humboldt Current system

    Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660

    Get PDF
    We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries
    corecore