9,711 research outputs found
Extrasolar Planets in Mean-Motion Resonance: Apses Alignment and Asymmetric Stationary Solutions
In recent years several pairs of extrasolar planets have been discovered in
the vicinity of mean-motion commensurabilities. In some cases, such as the
Gliese 876 system, the planets seem to be trapped in a stationary solution, the
system exhibiting a simultaneous libration of the resonant angle theta_1 = 2
lambda_2 - lambda_1 - varpi_1 and of the relative position of the pericenters.
In this paper we analyze the existence and location of these stable
solutions, for the 2/1 and 3/1 resonances, as function of the masses and
orbital elements of both planets. This is undertaken via an analytical model
for the resonant Hamiltonian function. The results are compared with those of
numerical simulations of the exact equations.
In the 2/1 commensurability, we show the existence of three principal
families of stationary solutions: (i) aligned orbits, in which theta_1 and
varpi_1 - varpi_2 both librate around zero, (ii) anti-aligned orbits, in which
theta_1=0 and the difference in pericenter is 180 degrees, and (iii) asymmetric
stationary solutions, where both the resonant angle and varpi_1 - varpi_2 are
constants with values different of 0 or 180 degrees. Each family exists in a
different domain of values of the mass ratio and eccentricities of both
planets. Similar results are also found in the 3/1 resonance.
We discuss the application of these results to the extrasolar planetary
systems and develop a chart of possible planetary orbits with apsidal
corotation. We estimate, also, the maximum planetary masses in order that the
stationary solutions are dynamically stable.Comment: 25 pages, 10 figures. Submitted to Ap
Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities
Motivated by recent theoretical and experimental works, we study the
statistical fluctuations of the parametric derivative of the transmission T and
reflection R coefficients in ballistic chaotic cavities in the presence of
absorption. Analytical results for the variance of the parametric derivative of
T and R, with and without time-reversal symmetry, are obtained for both
asymmetric and left-right symmetric cavities. These results are valid for
arbitrary number of channels, in completely agreement with the one channel case
in the absence of absorption studied in the literature.Comment: Modified version as accepted in PR
Wave Scattering through Classically Chaotic Cavities in the Presence of Absorption: An Information-Theoretic Model
We propose an information-theoretic model for the transport of waves through
a chaotic cavity in the presence of absorption. The entropy of the S-matrix
statistical distribution is maximized, with the constraint : n is the dimensionality of S, and meaning complete (no) absorption. For strong absorption our result
agrees with a number of analytical calculations already given in the
literature. In that limit, the distribution of the individual (angular)
transmission and reflection coefficients becomes exponential -Rayleigh
statistics- even for n=1. For Rayleigh statistics is attained even
with no absorption; here we extend the study to . The model is
compared with random-matrix-theory numerical simulations: it describes the
problem very well for strong absorption, but fails for moderate and weak
absorptions. Thus, in the latter regime, some important physical constraint is
missing in the construction of the model.Comment: 4 pages, latex, 3 ps figure
Statistical wave scattering through classically chaotic cavities in the presence of surface absorption
We propose a model to describe the statistical properties of wave scattering
through a classically chaotic cavity in the presence of surface absorption.
Experimentally, surface absorption could be realized by attaching an "absorbing
patch" to the inner wall of the cavity. In our model, the cavity is connected
to the outside by a waveguide with N open modes (or channels), while an
experimental patch is simulated by an "absorbing mirror" attached to the inside
wall of the cavity; the mirror, consisting of a waveguide that supports Na
channels, with absorption inside and a perfectly reflecting wall at its end, is
described by a subunitary scattering matrix Sa. The number of channels Na, as a
measure of the geometric cross section of the mirror, and the lack of unitarity
of Sa as a measure of absorption, are under our control: these parameters have
an important physical significance for real experiments. The absorption
strength in the cavity is quantified by the trace of the lack of unitarity. The
statistical distribution of the resulting S matrix for N=1 open channel and
only one absorbing channel, Na =1, is solved analytically for the orthogonal
and unitary universality classes, and the results are compared with those
arising from numerical simulations. The relation with other models existing in
the literature, in some of which absorption has a volumetric character, is also
studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system
This investigation uses the excellent HARPS radial velocity measurements of
CoRoT-7 to re-determine the planet masses and to explore techniques able to
determine mass and elements of planets discovered around active stars when the
relative variation of the radial velocity due to the star activity cannot be
considered as just noise and can exceed the variation due to the planets. The
main technique used here is a self-consistent version of the high-pass filter
used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and
CoRoT-7c. The results are compared to those given by two alternative
techniques: (1) The approach proposed by Hatzes et al. (2010) using only those
nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In
all cases, the eccentricities are taken equal to zero as indicated by the study
of the tidal evolution of the system; the periods are also kept fixed at the
values given by Queloz et al. Only the observations done in the time interval
BJD 2,454,847 - 873 are used because they include many nights with multiple
observations; otherwise it is not possible to separate the effects of the
rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period
of CoRoT-7b (0.853585 d). The results of the various approaches are combined to
give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6
\pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial
velocity of the star due to its activity is also given.The results obtained
with 3 different approaches agree to give masses larger than those in previous
determinations. From the existing internal structure models they indicate that
CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 .
CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure
Electronic Phase Separation Transition as the Origin of the Superconductivity and the Pseudogap Phase of Cuprates
We propose a new phase of matter, an electronic phase separation transition
that starts near the upper pseudogap and segregates the holes into high and low
density domains. The Cahn-Hilliard approach is used to follow quantitatively
this second order transition. The resulting grain boundary potential confines
the charge in domains and favors the development of intragrain superconducting
amplitudes. The zero resistivity transition arises only when the intergrain
Josephson coupling is of the order of the thermal energy and phase
locking among the superconducting grains takes place. We show that this
approach explains the pseudogap and superconducting phases in a natural way and
reproduces some recent scanning tunneling microscopy dataComment: 4 pages and 5 eps fig
Task planning and control synthesis for robotic manipulation in space applications
Space-based robotic systems for diagnosis, repair and assembly of systems will require new techniques of planning and manipulation to accomplish these complex tasks. Results of work in assembly task representation, discrete task planning, and control synthesis which provide a design environment for flexible assembly systems in manufacturing applications, and which extend to planning of manipulatiuon operations in unstructured environments are summarized. Assembly planning is carried out using the AND/OR graph representation which encompasses all possible partial orders of operations and may be used to plan assembly sequences. Discrete task planning uses the configuration map which facilitates search over a space of discrete operations parameters in sequential operations in order to achieve required goals in the space of bounded configuration sets
Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach
We deduce the effects of quantum interference on the conductance of chaotic
cavities by using a statistical ansatz for the S matrix. Assuming that the
circular ensembles describe the S matrix of a chaotic cavity, we find that the
conductance fluctuation and weak-localization magnitudes are universal: they
are independent of the size and shape of the cavity if the number of incoming
modes, N, is large. The limit of small N is more relevant experimentally; here
we calculate the full distribution of the conductance and find striking
differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended),
hub.pam.94.
Exact Solution for the Distribution of Transmission Eigenvalues in a Disordered Wire and Comparison with Random-Matrix Theory
An exact solution is presented of the Fokker-Planck equation which governs
the evolution of an ensemble of disordered metal wires of increasing length, in
a magnetic field. By a mapping onto a free-fermion problem, the complete
probability distribution function of the transmission eigenvalues is obtained.
The logarithmic eigenvalue repulsion of random-matrix theory is shown to break
down for transmission eigenvalues which are not close to unity. ***Submitted to
Physical Review B.****Comment: 20 pages, REVTeX-3.0, INLO-PUB-931028
- âŠ