7 research outputs found
Agrobacterium-mediated transformation of plants: Basic principles and influencing factors
Transformation is an important topic in plant biology and transgenic plants have become a major focus in plant research and breeding programs. Agrobacterium-mediated transformation as a practical and common method for introducing specific DNA fragments into plant genomes is well established and the number of transgenic plants produced using this method is increasing. Despite the popularity of the method, low efficiency of transformation is a major challenge for scientists. Modification of differentgenetic and environmental aspects of transformation method may lead to better understanding of the system and result in high efficiency transformation. In this review, we deal with recent genetic findingsas well as different environmental factors which potentially influence Agrobacterium-mediated transformation
News from Arabidopsis on the Meiotic Roles of Blap75/Rmi1 and Top3α
International audienc
News from Arabidopsis on the Meiotic Roles of Blap75/Rmi1 and Top3α
International audienc
The Arabidopsis BLAP75/Rmi1 Homologue Plays Crucial Roles in Meiotic Double-Strand Break Repair
In human cells and in Saccharomyces cerevisiae, BLAP75/Rmi1 acts together with BLM/Sgs1 and TopoIIIα/Top3 to maintain genome stability by limiting crossover (CO) formation in favour of NCO events, probably through the dissolution of double Holliday junction intermediates (dHJ). So far, very limited data is available on the involvement of these complexes in meiotic DNA repair. In this paper, we present the first meiotic study of a member of the BLAP75 family through characterisation of the Arabidopsis thaliana homologue. In A. thaliana blap75 mutants, meiotic recombination is initiated, and recombination progresses until the formation of bivalent-like structures, even in the absence of ZMM proteins. However, chromosome fragmentation can be detected as soon as metaphase I and is drastic at anaphase I, while no second meiotic division is observed. Using genetic and imunolocalisation studies, we showed that these defects reflect a role of A. thaliana BLAP75 in meiotic double-strand break (DSB) repair—that it acts after the invasion step mediated by RAD51 and associated proteins and that it is necessary to repair meiotic DSBs onto sister chromatids as well as onto the homologous chromosome. In conclusion, our results show for the first time that BLAP75/Rmi1 is a key protein of the meiotic homologous recombination machinery. In A. thaliana, we found that this protein is dispensable for homologous chromosome recognition and synapsis but necessary for the repair of meiotic DSBs. Furthermore, in the absence of BLAP75, bivalent formation can happen even in the absence of ZMM proteins, showing that in blap75 mutants, recombination intermediates exist that are stable enough to form bivalent structures, even when ZMM are absent