53 research outputs found

    Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture

    Full text link
    "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the Journal of Plant Nutrition 2015 March, available online at: http://www.tandfonline.com/10.1080/01904167.2014.934474."Cape gooseberry (Physalis peruviana L.) is a solanaceous plant. The growth and time-course of nutrient accumulation of the plant and its partitioning between roots, stems, leaves, and fruits were examined. The study was conducted analyzing two nutrient solutions in soilless culture under greenhouse conditions during two consecutive seasons. The macronutrient contents were analyzed. On average, the yield was 8.9 t.ha(-1). Growth of the plant until 90 d after transplanting obeys an exponential function of time and the relative growth rate for this period was determined. Nitrogen (N) was the element that showed the highest concentration, corresponding to leaves (4.67%), followed by potassium (K) in stems (4.46%). The highest accumulations of N, phosphorous (P), calcium (Ca), and magnesium (Mg) were found in leaves and of K in the stems. Potassium showed the highest nutrient accumulation (29 g.plant(-1)) and the highest specific uptake rate.Torres Rubio, JF.; Pascual Seva, N.; San Bautista Primo, A.; Pascual España, B.; López Galarza, SV.; Alagarda Pardo, J.; Maroto Borrego, JV. (2015). Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture. Journal of Plant Nutrition. 38(4):485-496. doi:10.1080/01904167.2014.934474S485496384Bellaloui, N., & Brown, P. H. (1998). Plant and Soil, 198(2), 153-158. doi:10.1023/a:1004343031242Bennett, J. P., Oshima, R. J., & Lippert, L. F. (1979). Effects of ozone on injury and dry matter partitioning in pepper plants. Environmental and Experimental Botany, 19(1), 33-39. doi:10.1016/0098-8472(79)90022-4CAUSTON, D. R. (1991). Plant Growth Analysis: The Variability of Relative Growth Rate Within a Sample. Annals of Botany, 67(2), 137-144. doi:10.1093/oxfordjournals.aob.a088112Convenio MAG-IICA (Ministerio de Agricultura y Ganadería. Institución Interamericana de Cooperación para la Agricultura). 2001. The cape gooseberry (Physalis peruvianaL.Physalis edulis). Subprograma de Cooperación Técnica, Ecuador. Available at: http://www.sica.gov.ec/agronegocios/Biblioteca/Convenio%20MAG%20IICA/productos/uvilla_mag.pdf (Accessed July 2007, in Spanish).El-Tohamy, W. A., El-Abagy, H. M., Abou-Hussein, S. D., & Gruda, N. (2009). Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanzen, 61(3-4), 123-127. doi:10.1007/s10343-009-0211-0Fresquet, J., Pascual, B., López-Galarza, S., Bautista, S., Baixauli, C., Gisbert, J. M., & Maroto, J. V. (2001). Nutrient uptake of pepino plants in soilless cultivation. The Journal of Horticultural Science and Biotechnology, 76(3), 338-343. doi:10.1080/14620316.2001.11511373Heuvelink, E., Bakker, M. J., Elings, A., Kaarsemaker, R. C., & Marcelis, L. F. M. (2005). EFFECT OF LEAF AREA ON TOMATO YIELD. Acta Horticulturae, (691), 43-50. doi:10.17660/actahortic.2005.691.2Leskovar, D. I., & Cantliffe, D. J. (1993). Comparison of Plant Establishment Method, Transplant, or Direct Seeding on Growth and Yield of Bell Pepper. Journal of the American Society for Horticultural Science, 118(1), 17-22. doi:10.21273/jashs.118.1.17Marcelis, L. F. M. (1993). Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature. Scientia Horticulturae, 54(2), 107-121. doi:10.1016/0304-4238(93)90059-yPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. doi:10.1016/j.foodres.2010.09.034Radford, P. J. (1967). Growth Analysis Formulae - Their Use and Abuse1. Crop Science, 7(3), 171. doi:10.2135/cropsci1967.0011183x000700030001xRamadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452-460. doi:10.1002/jsfa.2728Ramadan, M. F., & Moersel, J.-T. (2009). Oil extractability from enzymatically treated goldenberry (Physalis peruvianaL.) pomace: range of operational variables. International Journal of Food Science & Technology, 44(3), 435-444. doi:10.1111/j.1365-2621.2006.01511.xSalazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Scientia Horticulturae, 115(2), 142-148. doi:10.1016/j.scienta.2007.08.015Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., & Obreza, T. A. (2000). Growth and Canopy Characteristics of Field-Grown Tomato. Agronomy Journal, 92(1), 152. doi:10.2134/agronj2000.921152xTrinchero, G. D., Sozzi, G. O., Cerri, A. M., Vilella, F., & Fraschina, A. A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology, 16(2), 139-145. doi:10.1016/s0925-5214(99)00011-3Turner, A. (1994). Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission. Annals of Botany, 73(6), 617-622. doi:10.1006/anbo.1994.1077WILLIAMS, R. F. (1946). The Physiology of Plant Growth with Special Reference to the Concept of Net Assimilation Rate. Annals of Botany, 10(1), 41-72. doi:10.1093/oxfordjournals.aob.a083119Zapata, J.L., A. Saldarriaga, M. Londoño, and C. Díaz. 2002. Cape gooseberry Management in Colombia. Antioquia, Colombia: Rionegro, Programa Nacional de Transferencia de Tecnología Agropecuaria - Corpoica Regional Cuatro (in Spanish).Zerihun, A. (2000). Compensatory Roles of Nitrogen Uptake and Photosynthetic N-use Efficiency in Determining Plant Growth Response to Elevated CO2: Evaluation Using a Functional Balance Model. Annals of Botany, 86(4), 723-730. doi:10.1006/anbo.2000.123

    Deficiências minerais em plantas de bertalha ( Basella alba, L.)

    Get PDF
    Basella alba is used as a major food on the Amazon region, north Brazil for its high mineral and vitamins content. The purpose of the present work was: a) obtain a clear picture of the macronutrient deficiency; b) growth of the plants in function of (1); c) analyptical levels found in the leaves. Young Basella alba plants (bertalha in Portuguese) were cultivated in pots containing fine pure quartz and irrigated by percolation with different nutrient solutions lacking one of the element at the time. Clear cut symptoms were obtained for all macronutrients. Only the omission of nitrogen and potassium affect the dry matter production of plants. The range in dry matter for unhealthy and healthy leaves were: N% = 1.25--3-55; P% = 0.17-0.36; K% = 0.46-3.55; Ca% = 0,62-1.78; Mg% = 0.37-0.80; S% = 0.19-0.13.Plantas de bertalha (Basella alba, L.) INPA-1 foram cultivadas em casa de vegetação em quartzo moído, irrigadas com soluções nutritivas conforme SARRUGE (1975) e submetidas aos seguintes tratamentos: completo, omissão de N, omissão de P, omissão de K, omissão de Ca, omissão de Mg e omissão de S, com o objetivo de: (a) obter sintomas de deficiência dos ma cronutrientes; (b) analisar o crescimento das plantas através da produção de matéria seca; (c) determinar a concentração dos macronutrientes nas folhas e caules das plantas cultivadas nos diversos tratamentos. Os sintomas visuais de deficiência foram identificados e descritos. As plantas foram coletadas e separadas em raiz, caule, folhas e determinaram-se os teores dos macronutrientes minerais neste material. Os resultados obtidos mostram: - os sintomas visuais de deficiência são bem definidos e de fácil caracterização para todos os nutrientes; - só foi possível detectar efeito na produção de matéria seca das folhas e caules para omissão de nitrogênio e para omissão de potássio nos caules; - os níveis de deficiência e adequação obtidos nas folhas foram respectivamente: N% = 1,25 e 2,63; P% = 0,17 e 0,36; K% = 0,46 e 3,55; Ca% = 0,62e 1,78; Mg% = 0,37 e 0,80; s%= 0,19 e 0,23. - os níveis de deficiência e adequação obtidos nos caules foram respectivamente: N% = 0,67 e 0,98; P% = 0,13 e 0,31; K% = 0,73 e 2,67; Ca% = 0,11 e 0,64; Mg% = 0,08 e 0,20; S% = 0,15 e 0,20

    Deficiências de kacronutrientes e de boro em seringueira (Hevea brasiliensis L.)

    Get PDF
    In order to obtain: a) a clear picture of the deficiencies symptoms of N, P, K, Ca, Mg, S and B; b) the lack of the elements on the dry matter production; c) concentration of the macro and micronutrients on the leaves, stems and roots. Young rubber plants (Hevea brasiliensis L.), were cultivated in nutrients solutions, in which one the following elements were omitted at once: N, P, K, Ca, Mg, S and B. Clear out symptoms were obtained for all macronutrients and boron. The growth rate of the rubber plants were drastically affected by lack of N, K followed by other nutrients. The omission of P from the nutrient solution did not affected the growth of the plants. The levels detected by chemical analysis of the leaves from with symptoms of deficiency and without symptoms of deficiency plants were: N% = 1.94 and 3.40: P% =0.14 and 0.25; K% = 0.79 and 2.22; Ca% = 0.59 and 1.28; Mg% = 0.26 and 0.50; S% = 0.10 and 0.10; B ppm = 31-3 and 171.8.Plantas de seringueira (Hevea brasiliensis L.) foram cultivadas em casa de vegetação, em quartzo moído, irrigado com soluções nutritivas, e submetidas aos seguintes tratamentos: completo, omissão de N, omissão de P, omissão de Ca, omissão de Mg, omissão de S e omissão de B, com o objetivo de: (a) obter sintomas de deficiências de macronutrientes e de boro; (b) analisar o crescimento das plantas através da produção de matéria seca; (c) determinar a concentração de macro e micronutrientes nas folhas, caule e raízes das plantas cultivadas nos diversos tratamentos. Os sintomas visuais de deficiência foram identificados e descritos. As plantas foram coletadas e separadas em raiz, caule e folhas, e determinaram-se os teores de macro e micronutrientes . Os resultados mostraram: - foram identificados sintomas de deficiências para todos os tratamentos com omissão de nutrientes (N, P, K, Ca, Mg, S e B); - a omissão de N, K, Mg ou B da solução nutritiva diminuiu o crescimento das plantas; - as concentrações dos elementos nas folhas de plantas com sintomas e sem sintomas de deficiência foram, respectivamente: N% = 1,94 e 3,40; P% = 0,14 e 0,25; K% = 0,79 e 2,22; Ca% = 0,59e 1,28; Mg% = 0,26 e 0,50; S% = 0,10 e 0,10; Bppm = 31 ,3 e 171,8

    Mineral nutrition of vegetable crops: XXV - Mineral nutrition of new zealand spinach plant (Tetragonia expansa Murr.)

    Get PDF
    The present work was carried out in order to study: a - the effect of omission and presence of the macronutrients and boron on the growth of the plants; b - deficiency symptoms of macronutrients, as well of boron; c - the effect of the deficiency of each nutrient on the chemical composition of the plants. Young spinach plants were grown in pots containing pure quartz sand. Several times a day the plants were irrigated by percolation with nutrient solutions. The treatments were: complete solution and deficient solution, in which each one of the macronutrients was omitted as well boron. Soon as the malnutrition symptoms appered, the plants were harvested and analysed chemically. - symptoms of malnutrition are easily observed for N, K, Ca and B. - symptoms of malnutrition for P, S and Mg are not easily identified. - the nutrient content, in dry matter, in deficient leaves and healthy leaves is:O trabalho teve como objetivo estudar alguns aspectos da nutrição mineral do espinafre (Tetragonia expansa Murr.) no que concerne: 1 - Efeitos da omissão dos macronutrientes e do boro, na obtenção de um quadro sintomatológico; 2 - Efeitos das carências na produção de matéria seca e composição química da planta. Mudas com trinta dias de idade foram transplantadas para soluções nutritivas carentes nos macronutrientes e/ou em boro. A coleta das plantas foi realizada quando os sintomas de deficiência se tornaram evidentes. No material seco procedeu-se a análise química. Os dados mostram que: 1 - os sintomas visuais de deficiência de N, K, Ca e B apresentam-se bem definidos; sendo que os de P, Mg e S são de difícil caracterização ; 2 - os teores dos nutrientes em plantas sadias e deficientes são

    Applied aspects of pineapple flowering

    Full text link

    Factors affecting nitrate content in field-grown vegetables

    No full text
    corecore