1,424 research outputs found

    Utilizing code orthogonality information for interference suppression in UTRA downlink

    Get PDF

    A software and hardware evaluation of revolutionary turbo MIMO OFDM schemes for 5 GHz WLANs

    Get PDF

    Measuring sparticle masses in non-universal string inspired models at the LHC

    Get PDF
    We demonstrate that some of the suggested five supergravity points for study at the LHC could be approximately derived from perturbative string theories or M-theory, but that charge and colour breaking minima would result. As a pilot study, we then analyse a perturbative string model with non-universal soft masses that are optimised in order to avoid global charge and colour breaking minima. By combining measurements of up to six kinematic edges from squark decay chains with data from a new kinematic variable, designed to improve slepton mass measurements, we demonstrate that a typical LHC experiment will be able to determine squark, slepton and neutralino masses with an accuracy sufficient to permit an optimised model to be distinguished from a similar standard SUGRA point. The technique thus generalizes SUSY searches at the LHC

    Detecting exotic heavy leptons at the Large Hadron Collider

    Get PDF
    New almost-degenerate charged and neutral heavy leptons are a feature of a number of theories of physics beyond the Standard Model. The prospects for detecting these at the Large Hadron Collider using a time-of-flight technique are considered, along with any cosmological or experimental constraints on their masses. Based on a discovery criterion of 10 detected exotic leptons we conclude that, with an integrated luminosity of 100 fb-1, it should be possible to detect such leptons provided their masses are less than 950 GeV. It should also be possible to use the angular distribution of the produced particles to distinguish these exotic leptons from supersymmetric scalar leptons, at a better than 90% confidence level, for masses up to 580 GeV

    Front propagation in stochastic neural fields

    Get PDF
    We analyze the effects of extrinsic multiplicative noise on front propagation in a scalar neural field with excitatory connections. Using a separation of time scales, we represent the fluctuating front in terms of a diffusive-like displacement (wandering) of the front from its uniformly translating position at long time scales, and fluctuations in the front profile around its instantaneous position at short time scales. One major result of our analysis is a comparison between freely propagating fronts and fronts locked to an externally moving stimulus. We show that the latter are much more robust to noise, since the stochastic wandering of the mean front profile is described by an Ornstein--Uhlenbeck process rather than a Wiener process, so that the variance in front position saturates in the long time limit rather than increasing linearly with time. Finally, we consider a stochastic neural field that supports a pulled front in the deterministic limit, and show that the wandering of such a front is now subdiffusive

    Exploring small extra dimensions at the Large Hadron Collider

    Get PDF
    Many models that include small extra space dimensions predict graviton states which are well separated in mass, and which can be detected as resonances in collider experiments. It has been shown that the ATLAS detector at the Large Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the decay mode G->ee, using a conservative model. This work extends the study of the ee channel over the full accessible parameter space, and shows that the reach could extend as high as 3.5 TeV. It then discusses ways in which the expected universal coupling of the resonance can be confirmed using other decay modes. In particular, the mode G-> di-photons is shown to be measurable with good precision, which would provide powerful confirmation of the graviton hypothesis. The decays G-> mu mu, WW, ZZ and jet--jet are measurable over a more limited range of couplings and masses. Using information from mass and cross-section measurements, the underlying parameters can be extracted. In one test model, the size of the extra dimension can be determined to a precision in length of 7x10^-33 m

    The Antiferroelectric ↔ Ferroelectric Phase Transition in Lead-Containing and Lead-Free Perovskite Ceramics

    Get PDF
    A comprehensive review on the latest development of the antiferroelectric ferroelectric phase transition is presented. The abrupt volume expansion and sudden development of polarization at the phase transition has been extensively investigated in PbZrO3-based perovskite ceramics. New research developments in these compositions, including the incommensurate domain structure, the auxetic behavior under electric fields in the induced ferroelectric phase, the ferroelastic behavior of the multicell cubic phase, the impact of radial compression, the unexpected electric field-induced ferroelectric-to-antiferroelectric transition, and the phase transition mechanical toughening effect have been summarized. Due to their significance to lead-free piezoelectric ceramics, compounds with antiferroelectric phases, including NaNbO3, AgNbO3, and (Bi1/2Na1/2)TiO3, are also critically reviewed. Focus has been placed on the (Bi1/2Na1/2)TiO3–BaTiO3 solid solution where the electric field-induced ferroelectric phase remains even after the applied field is removed at room temperature. Therefore, the electric field-induced antiferroelectric-to-ferroelectric phase transition is a key to the poling process to develop piezoelectricity in morphotropic phase boundary (MPB) compositions. The competing phase transition and domain switching processes in 0.93(Bi1/2Na1/2)TiO3–0.07BaTiO3 are directly imaged with nanometer resolution using the unique in situ transmission electron microscopy (TEM) technique

    Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders

    Get PDF
    We present results of CHARYBDIS2, a new Monte Carlo simulation of black hole production and decay at hadron colliders in theories with large extra dimensions and TeV-scale gravity. The main new feature of CHARYBDIS2 is a full treatment of the spin-down phase of the decay process using the angular and energy distributions of the associated Hawking radiation. Also included are improved modelling of the loss of angular momentum and energy in the production process as well as a wider range of options for the Planck-scale termination of the decay. The new features allow us to study the effects of black hole spin and the feasibility of its observation in such theories

    Colour Connection and Diquark Fragmentation in e^+e^- \to c \bar c q \bar q \to h's Process

    Full text link
    The hadronization effects induced by different colour connections of ccˉqqˉc\bar{c}q\bar{q} system in e+ee^+e^- annihilation are investigated by a toy model where diquark fragmentation is employed based on Pythia. It is found that the correlations between the charm baryons and charm antibaryons produced via diquark pair fragmentation are much stronger, and their momentum spectra are harder than those from the standard colour connection in Pythia.Comment: 10 pages, 7 figures and 1 table in latex with axodraw.sty, version to appear in PL

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models
    corecore