928 research outputs found

    Computer simulation of liquid-crystal surface modification

    Get PDF
    Metropolis Monte Carlo simulations are used to study the interplay between two different anchoring effects of spherocylinders on a modified surface consisting of hard walls onto which liquid-crystal molecules have been perpendicularly grafted. By varying both the length and grafting density of the surface molecules, a number of different and novel anchoring regimes are observed including: planar, homeotropic, tilted and decoupled planar

    Magnetization Plateaux in Bethe Ansatz Solvable Spin-S Ladders

    Full text link
    We examine the properties of the Bethe Ansatz solvable two- and three-leg spin-SS ladders. These models include Heisenberg rung interactions of arbitrary strength and thus capture the physics of the spin-SS Heisenberg ladders for strong rung coupling. The discrete values derived for the magnetization plateaux are seen to fit with the general prediction based on the Lieb-Schultz- Mattis theorem. We examine the magnetic phase diagram of the spin-1 ladder in detail and find an extended magnetization plateau at the fractional value =1/2 = {1/2} in agreement with the experimental observation for the spin-1 ladder compound BIP-TENO.Comment: 11 pages, 1 figur

    Effect of magnetic and non-magnetic impurities on highly anisotropic superconductivity

    Full text link
    We generalize Abrikosov-Gor'kov solution of the problem of weakly coupled superconductor with impurities on the case of a multiband superconductor with arbitrary interband order parameter anisotropy, including interband sign reversal of the order parameter. The solution is given in terms of the effective (renormalized) coupling matrix and describes not only TcT_c suppression but also renormalization of the superconducting gap basically at all temperatures. In many limiting cases we find analytical solutions for the critical temperature suppression. We illustrate our results by numerical calculations for two-band model systems.Comment: 18 pages (12pt) RevTeX, 4 postscript figure

    Structure and dynamics of Rh surfaces

    Full text link
    Lattice relaxations, surface phonon spectra, surface energies, and work functions are calculated for Rh(100) and Rh(110) surfaces using density-functional theory and the full-potential linearized augmented plane wave method. Both, the local-density approximation and the generalized gradient approximation to the exchange-correlation functional are considered. The force constants are obtained from the directly calculated atomic forces, and the temperature dependence of the surface relaxation is evaluated by minimizing the free energy of the system. The anharmonicity of the atomic vibrations is taken into account within the quasiharmonic approximation. The importance of contributions from different phonons to the surface relaxation is analyzed.Comment: 9 pages, 7 figures, scheduled to appear in Phys. Rev. B, Feb. 15 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    On the Formation Height of the SDO/HMI Fe 6173 Doppler Signal

    Full text link
    The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) is designed to study oscillations and the mag- netic field in the solar photosphere. It observes the full solar disk in the Fe I absorption line at 6173\AA . We use the output of a high-resolution 3D, time- dependent, radiation-hydrodynamic simulation based on the CO5BOLD code to calculate profiles F({\lambda},x,y,t) for the Fe I 6173{\AA} line. The emerging profiles F({\lambda},x,y,t) are multiplied by a representative set of HMI filter transmission profiles R_i({\lambda},1 \leq i \leq 6) and filtergrams I_i(x,y,t;1 \leq i \leq 6) are constructed for six wavelengths. Doppler velocities V_HMI(x,y,t) are determined from these filtergrams using a simplified version of the HMI pipeline. The Doppler velocities are correlated with the original velocities in the simulated atmosphere. The cross- correlation peaks near 100 km, suggesting that the HMI Doppler velocity signal is formed rather low in the solar atmosphere. The same analysis is performed for the SOHO/MDI Ni I line at 6768\AA . The MDI Doppler signal is formed slightly higher at around 125 km. Taking into account the limited spatial resolution of the instruments, the apparent formation height of both the HMI and MDI Doppler signal increases by 40 to 50 km. We also study how uncertainties in the HMI filter-transmission profiles affect the calculated velocities.Comment: 15 pages, 11 Figure

    Phase transitions in BaTiO3_3 from first principles

    Full text link
    We develop a first-principles scheme to study ferroelectric phase transitions for perovskite compounds. We obtain an effective Hamiltonian which is fully specified by first-principles ultra-soft pseudopotential calculations. This approach is applied to BaTiO3_3, and the resulting Hamiltonian is studied using Monte Carlo simulations. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. The order-disorder vs.\ displacive character of the transitions and the roles played by different interactions are discussed.Comment: 13 page

    Hydrodynamics of Spatially Ordered Superfluids

    Full text link
    We derive the hydrodynamic equations for the supersolid and superhexatic phases of a neutral two-dimensional Bose fluid. We find, assuming that the normal part of the fluid is clamped to an underlying substrate, that both phases can sustain third-sound modes and that in the supersolid phase there are additional modes due to the superfluid motion of point defects (vacancies and interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication in Phys. Rev.

    Development and psychometric properties of the physical rehabilitation services acceptability questionnaire

    Get PDF
    Background: Access to rehabilitation services is considered to be a right for all people. One of the most important indicators for access to rehabilitation services is an individual's general acceptance of rehabilitation. This tool was designed based on relevant studies and experiences of rehabilitation specialists to design a questionnaire to specifically measure patient acceptability of physical rehabilitation services. Methods: In this study, an exploratory sequential mixed methods design was used. The first phase included a review of the literature and analysis of relevant studies, focus group discussions, and qualitative content analysis. In the second phase, construct validity was assessed by exploratory and confirmatory factor analysis. Also, convergent and divergent validity were measured. Reliability was evaluated by internal consistency (Cronbach's alpha and McDonald's Omega) and construct reliability. Statistical procedures were calculated by SPSS-AMOS24 and JASP0.9.2 software. Results: A total of 200 questionnaires were completed by members of Iranian Disability Campaign. Three factors and 25 items were identified according to results of the first phase of this study. In the second phase, face validity was confirmed. To assess the content validity ratio, 9 items, with the mean of content validity ratio (CVR) < 0.49, were deleted, while the content validity index (CVI) < 0.79 was revised. The kappa coefficient < 0.6 was fair and scale content validity index (SCVI) under 0.9 was considered appropriate. Results of exploratory factor analysis showed that 48 of the variance of the acceptability of physical rehabilitation services was based on patients' satisfaction, ethical behavior, and patient centered services. Confirmatory factor analysis confirmed the suitability of the final model. Convergent and divergent validity and reliability of the measure, the Physical Rehabilitation Services Acceptability questionnaire was fulfilled. Conclusion: Findings indicated that the proposed constructs that promoted the Acceptability of Physical Rehabilitation Services Questionnaire had good validity and reliability in participants with physical disabilities. © Iran University of Medical Sciences

    Quantized spin waves in the metallic state of magnetoresistive manganites

    Full text link
    High resolution spin waves measurements have been carried out in ferromagnetic (F) La(1-x)(Sr,Ca)xMnO3 with x(Sr)=0.15, 0.175, 0.2, 0.3 and x(Ca)=0.3. In all q-directions, close to the zone boundary, the spin wave spectra consist of several energy levels, with the same values in the metallic and the x\approx 1/8 ranges. Mainly the intensity varies, jumping from the lower energy levels determined in the x\approx 1/8 range to the higher energy ones observed in the metallic state. On the basis of a quantitative agreement found for x(Sr)=0.15 in a model of ordered 2D clusters, the spin wave anomalies of the metallic state can be interpreted in terms of quantized spin waves within the same 2D clusters, embedded in a 3D matrix.Comment: 4 pages, 5 figure

    Global Relationships Between River Width, Slope, Catchment Area, Meander Wavelength, Sinuosity, and Discharge

    Get PDF
    Using river centerlines created with Landsat images and the Shuttle Radar Topography Mission digital elevation model, we created spatially continuous maps of mean annual flow river width, slope, meander wavelength, sinuosity, and catchment area for all rivers wider than 90 m located between 60°N and 56°S. We analyzed the distributions of these properties, identified their typical ranges, and explored relationships between river planform and slope. We found width to be directly associated with the magnitude of meander wavelength and catchment area. Moreover, we found that narrower rivers show a larger range of slope and sinuosity values than wider rivers. Finally, by comparing simulated discharge from a water balance model with measured widths, we show that power laws between mean annual discharge and width can predict width typically to −35% to +81%, even when a single relationship is applied across all rivers with discharge ranging from 100 to 50,000 m3/s
    corecore