67 research outputs found
Pathways of Large-scale Magnetic Couplings Between Solar Coronal Events
The high-cadence, comprehensive view of the solar corona by SDO/AIA shows many events that are widely separated in space while occurring close together in time. In some cases, sets of coronal events are evidently causally related, while in many other instances indirect evidence can be found. We present case studies to highlight a variety of coupling processes involved in coronal events. We find that physical linkages between events do occur, but concur with earlier studies that these couplings appear to be crucial to understanding the initiation of major eruptive or explosive phenomena relatively infrequently. We note that the post-eruption reconfiguration timescale of the large-scale corona, estimated from the extreme-ultraviolet afterglow, is on average longer than the mean time between coronal mass ejections (CMEs), so that many CMEs originate from a corona that is still adjusting from a previous event. We argue that the coronal field is intrinsically global: current systems build up over days to months, the relaxation after eruptions continues over many hours, and evolving connections easily span much of a hemisphere. This needs to be reflected in our modeling of the connections from the solar surface into the heliosphere to properly model the solar wind, its perturbations, and the generation and propagation of solar energetic particles. However, the large-scale field cannot be constructed reliably by currently available observational resources. We assess the potential of high-quality observations from beyond Earth's perspective and advanced global modeling to understand the couplings between coronal events in the context of CMEs and solar energetic particle events
Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles
We performed for the first time stereoscopic triangulation of coronal loops
in active regions over the entire range of spacecraft separation angles
(, and
). The accuracy of stereoscopic correlation depends mostly on the
viewing angle with respect to the solar surface for each spacecraft, which
affects the stereoscopic correspondence identification of loops in image pairs.
From a simple theoretical model we predict an optimum range of , which is also experimentally confirmed. The best
accuracy is generally obtained when an active region passes the central
meridian (viewed from Earth), which yields a symmetric view for both STEREO
spacecraft and causes minimum horizontal foreshortening. For the extended
angular range of we find a mean 3D
misalignment angle of of stereoscopically
triangulated loops with magnetic potential field models, and for a force-free field model, which is partly caused by
stereoscopic uncertainties . We predict optimum
conditions for solar stereoscopy during the time intervals of 2012--2014,
2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure
The Open Flux Problem
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun's photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun's magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission
Small scale energy release driven by supergranular flows on the quiet Sun
In this article we present data and modelling for the quiet Sun that strongly suggest a ubiquitous small-scale atmospheric heating mechanism that is driven solely by converging supergranular flows.
A possible energy source for such events is the power transfer to the plasma via the work done on the magnetic field by photospheric convective flows, which exert drag of the footpoints of magnetic structures. In this paper we present evidence of small scale energy release events driven directly by the hydrodynamic forces that act on the magnetic elements in the photosphere, as a result of supergranular scale flows. We show strong spatial and temporal correlation between quiet Sun soft X-ray emission (from <i>Yohkoh</i> and <i>SOHO</i> MDI-derived flux removal events driven by deduced photospheric flows.
We also present a simple model of heating generated by flux submergence, based on particle acceleration by converging magnetic mirrors.
In the near future, high resolution soft X-ray images from XRT on the <i>Hinode</i> satellite will allow definitive, quantitative verification of our results
A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. I. Theory
We derive an analytical approximation of nonlinear force-free magnetic field
solutions (NLFFF) that can efficiently be used for fast forward-fitting to
solar magnetic data, constrained either by observed line-of-sight magnetograms
and stereoscopically triangulated coronal loops, or by 3D vector-magnetograph
data. The derived NLFFF solutions provide the magnetic field components
, , , the force-free parameter
, the electric current density , and are
accurate to second-order (of the nonlinear force-free -parameter). The
explicit expressions of a force-free field can easily be applied to modeling or
forward-fitting of many coronal phenomena.Comment: Solar Physics (in press), 26 pages, 11 figure
A Nonlinear Force-Free Magnetic Field Approximation Suitable for Fast Forward-Fitting to Coronal Loops. II. Numeric Code and Tests
Based on a second-order approximation of nonlinear force-free magnetic field
solutions in terms of uniformly twisted field lines derived in Paper I, we
develop here a numeric code that is capable to forward-fit such analytical
solutions to arbitrary magnetogram (or vector magnetograph) data combined with
(stereoscopically triangulated) coronal loop 3D coordinates. We test the code
here by forward-fitting to six potential field and six nonpotential field cases
simulated with our analytical model, as well as by forward-fitting to an
exactly force-free solution of the Low and Lou (1990) model. The
forward-fitting tests demonstrate: (i) a satisfactory convergence behavior
(with typical misalignment angles of ), (ii)
relatively fast computation times (from seconds to a few minutes), and (iii)
the high fidelity of retrieved force-free -parameters ( for simulations and for the Low and Lou model). The
salient feature of this numeric code is the relatively fast computation of a
quasi-forcefree magnetic field, which closely matches the geometry of coronal
loops in active regions, and complements the existing {\sl nonlinear force-free
field (NLFFF)} codes based on photospheric magnetograms without coronal
constraints.Comment: Solar PHysics, (in press), 25 pages, 11 figure
Magnetic Connectivity between Active Regions 10987, 10988, and 10989 by Means of Nonlinear Force-Free Field Extrapolation
Extrapolation codes for modelling the magnetic field in the corona in
cartesian geometry do not take the curvature of the Sun's surface into account
and can only be applied to relatively small areas, \textit{e.g.}, a single
active region. We apply a method for nonlinear force-free coronal magnetic
field modelling of photospheric vector magnetograms in spherical geometry which
allows us to study the connectivity between multi-active regions. We use vector
magnetograph data from the Synoptic Optical Long-term Investigations of the Sun
survey (SOLIS)/Vector Spectromagnetograph(VSM) to model the coronal magnetic
field, where we study three neighbouring magnetically connected active regions
(ARs: 10987, 10988, 10989) observed on 28, 29, and 30 March 2008, respectively.
We compare the magnetic field topologies and the magnetic energy densities and
study the connectivities between the active regions(ARs). We have studied the
time evolution of magnetic field over the period of three days and found no
major changes in topologies as there was no major eruption event. From this
study we have concluded that active regions are much more connected
magnetically than the electric current.Comment: Solar Physic
Comparisons of Supergranule Characteristics During the Solar Minima of Cycles 22/23 and 23/24
Supergranulation is a component of solar convection that manifests itself on
the photosphere as a cellular network of around 35 Mm across, with a turnover
lifetime of 1-2 days. It is strongly linked to the structure of the magnetic
field. The horizontal, divergent flows within supergranule cells carry local
field lines to the cell boundaries, while the rotational properties of
supergranule upflows may contribute to the restoration of the poloidal field as
part of the dynamo mechanism that controls the solar cycle. The solar minimum
at the transition from cycle 23 to 24 was notable for its low level of activity
and its extended length. It is of interest to study whether the convective
phenomena that influences the solar magnetic field during this time differed in
character to periods of previous minima. This study investigates three
characteristics (velocity components, sizes and lifetimes) of solar
supergranulation. Comparisons of these characteristics are made between the
minima of cycles 22/23 and 23/24 using MDI Doppler data from 1996 and 2008,
respectively. It is found that whereas the lifetimes are equal during both
epochs (around 18 h), the sizes are larger in 1996 (35.9 +/- 0.3 Mm) than in
2008 (35.0 +/- 0.3 Mm), while the dominant horizontal velocity flows are weaker
(139 +/- 1 m/s in 1996; 141 +/- 1 m/s in 2008). Although numerical differences
are seen, they are not conclusive proof of the most recent minimum being
inherently unusual.Comment: 22 pages, 5 figures. Solar Physics, in pres
How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?
The SDO/HMI instruments provide photospheric vector magnetograms with a high
spatial and temporal resolution. Our intention is to model the coronal magnetic
field above active regions with the help of a nonlinear force-free
extrapolation code. Our code is based on an optimization principle and has been
tested extensively with semi-analytic and numeric equilibria and been applied
before to vector magnetograms from Hinode and ground based observations.
Recently we implemented a new version which takes measurement errors in
photospheric vector magnetograms into account. Photospheric field measurements
are often due to measurement errors and finite nonmagnetic forces inconsistent
as a boundary for a force-free field in the corona. In order to deal with these
uncertainties, we developed two improvements: 1.) Preprocessing of the surface
measurements in order to make them compatible with a force-free field 2.) The
new code keeps a balance between the force-free constraint and deviation from
the photospheric field measurements. Both methods contain free parameters,
which have to be optimized for use with data from SDO/HMI. Within this work we
describe the corresponding analysis method and evaluate the force-free
equilibria by means of how well force-freeness and solenoidal conditions are
fulfilled, the angle between magnetic field and electric current and by
comparing projections of magnetic field lines with coronal images from SDO/AIA.
We also compute the available free magnetic energy and discuss the potential
influence of control parameters.Comment: 17 Pages, 6 Figures, Sol. Phys., accepte
Comparison of large-scale flows on the Sun measured by time-distance helioseismology and local correlation tracking technique
We present a direct comparison between two different techniques time-distance
helioseismology and a local correlation tracking method for measuring mass
flows in the solar photosphere and in a near-surface layer: We applied both
methods to the same dataset (MDI high-cadence Dopplergrams covering almost the
entire Carrington rotation 1974) and compared the results. We found that after
necessary corrections, the vector flow fields obtained by these techniques are
very similar. The median difference between directions of corresponding vectors
is 24 degrees, and the correlation coefficients of the results for mean zonal
and meridional flows are 0.98 and 0.88 respectively. The largest discrepancies
are found in areas of small velocities where the inaccuracies of the computed
vectors play a significant role. The good agreement of these two methods
increases confidence in the reliability of large-scale synoptic maps obtained
by them.Comment: 14 pages, 6 figures, just before acceptance in Solar Physic
- …