2,993 research outputs found
Characterizations and recognition of circular-arc graphs and subclasses: A survey
Circular graphs are intersection graphs of arcs on a circle. These graphs are reported to have been studied since 1964, and they have been receiving considerable attention since a series of papers by Tucker in the 1970s. Various subclasses of circular-arc graphs have also been studied. Among these are the proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and co-bipartite circular-arc graphs. Several characterizations and recognition algorithms have been formulated for circular-arc graphs and its subclasses. In particular, it should be mentioned that linear time algorithms are known for all these classes of graphs. In the present paper, we survey these characterizations and recognition algorithms, with emphasis on the linear time algorithms. © 2008 Elsevier B.V. All rights reserved.Fil:Lin, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Use of hydraulic rating to set environmental flows in the Zhangxi River, China
Ningbo city, China, is a rapidly growing residential and industrial centre, with a current population of 4 million. Its development has required a major water supply expansion programme providing 400,000 m3 of water per day from the upper reaches of the Zhangxi River by means of a cascade of reservoirs. Water resources management is achieved through operation of two major reservoirs, Jiaokou (75 million m3) and Zhougongzhai (93 million m3). Water is released from the reservoirs, via turbines (generating hydropower), for local industry, irrigated agriculture and public supply along the lower reaches of the River and to maintain the river ecosystem. Surveys of local residents along the Zhangxi River showed its important role in aspects of life, social activity, culture and leisure. Analysis of ecological monitoring data demonstrated the diverse nature of fish, plants and invertebrates within the river. Some elements of the ecosystem have a high local economic value to local people. This paper reports an assessment of the environmental flow needed to support key species in the river ecosystem. It employs hydraulic ratings to define sections of the river where flow velocity reaches 0.5 ms-1, required to stimulate spawning of the moonlight fish, an economically important and indicator species in the river. In two out of 6 cross-sections studied, flow releases from the reservoirs meet the needs of fish. The reservoirs reduce flood flows, which may lead to a loss of deep pools that are essential for the fish to survive during winter month
Differentiation of Murine Embryonic Stem Cells to Thyrocytes Requires Insulin and Insulin-like Growth Factor-1
[Abstract] The mechanisms controlling thyrocyte development during embryonic stem (ES) cell differentiation have only been partially elucidated, although previous studies have suggested the participation of thyroid stimulating hormone (TSH) in these processes. To further define the role of TSH in this context, we have studied a murine ES cell line in which green fluorescent protein (GFP) cDNA is targeted to the TSH receptor (TSHR) gene, linking the expression of GFP to the transcription of the endogenous TSHR gene. We demonstrate that, in the initial stages of embryoid body formation, activin A and TSH induce the differentiation of definitive endoderm and thyrocyte progenitors expressing Sox17, Foxa2, and TSHR. These thyrocyte progenitors are then converted into cellular aggregates that, in the presence of insulin and IGF-1, further differentiate into mature thyroglobulin-expressing thyrocytes. Our data suggest that, despite the fact that TSH is important for the induction and specification of thyrocytes from ES cells, insulin and IGF-1 are crucial for thyrocyte maturation. Our method provides a powerful in vitro differentiation model for studying the mechanisms of early thyrocyte lineage development.United States. National Institutes of Health; DK06805
Fluctuating Elastic Rings: Statics and Dynamics
We study the effects of thermal fluctuations on elastic rings. Analytical
expressions are derived for correlation functions of Euler angles, mean square
distance between points on the ring contour, radius of gyration, and
probability distribution of writhe fluctuations. Since fluctuation amplitudes
diverge in the limit of vanishing twist rigidity, twist elasticity is essential
for the description of fluctuating rings. We find a crossover from a small
scale regime in which the filament behaves as a straight rod, to a large scale
regime in which spontaneous curvature is important and twist rigidity affects
the spatial configurations of the ring. The fluctuation-dissipation relation
between correlation functions of Euler angles and response functions, is used
to study the deformation of the ring by external forces. The effects of inertia
and dissipation on the relaxation of temporal correlations of writhe
fluctuations, are analyzed using Langevin dynamics.Comment: 43 pages, 9 Figure
The Sub-Surface Structure of a Large Sample of Active Regions
We employ ring-diagram analysis to study the sub-surface thermal structure of
active regions. We present results using a large number of active regions over
the course of Solar Cycle 23. We present both traditional inversions of
ring-diagram frequency differences, with a total sample size of 264, and a
statistical study using Principal Component Analysis. We confirm earlier
results on smaller samples that sound speed and adiabatic index are changed
below regions of strong magnetic field. We find that sound speed is decreased
in the region between approximately r=0.99R_sun and r=0.995R_sun (depths of 3Mm
to 7Mm), and increased in the region between r=0.97R_sun and r=0.985R_sun
(depths of 11Mm to 21Mm). The adiabatic index is enhanced in the same deeper
layers that sound-speed enhancement is seen. A weak decrease in adiabatic index
is seen in the shallower layers in many active regions. We find that the
magnitudes of these perturbations depend on the strength of the surface
magnetic field, but we find a great deal of scatter in this relation, implying
other factors may be relevant.Comment: 16 pages, 11 figures, accepted for publication in Solar Physic
Pairwise Force SPH Model for Real-Time Multi-Interaction Applications
In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to allow modeling of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple kinds of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach
Blow up criterion for compressible nematic liquid crystal flows in dimension three
In this paper, we consider the short time strong solution to a simplified
hydrodynamic flow modeling the compressible, nematic liquid crystal materials
in dimension three. We establish a criterion for possible breakdown of such
solutions at finite time in terms of the temporal integral of both the maximum
norm of the deformation tensor of velocity gradient and the square of maximum
norm of gradient of liquid crystal director field.Comment: 22 page
Modified conjugated gradient method for diagonalising large matrices
We present an iterative method to diagonalise large matrices. The basic idea
is the same as the conjugated gradient (CG) method, i.e, minimizing the
Rayleigh quotient via its gradient and avoiding reintroduce errors to the
directions of previous gradients. Each iteration step is to find lowest
eigenvector of the matrix in a subspace spanned by the current trial vector and
the corresponding gradient of the Rayleigh quotient, as well as some previous
trial vectors. The gradient, together with the previous trail vectors, play a
similar role of the conjugated gradient of the original CG algorithm. Our
numeric tests indicate that this method converges significantly faster than the
original CG method. And the computational cost of one iteration step is about
the same as the original CG method. It is suitably for first principle
calculations.Comment: 6 Pages, 2EPS figures. (To appear in Phys. Rev. E
Recommended from our members
Kinetics and mechanisms of key elementary processes of importance to high temperature combustion chemistry
We have investigated the kinetics and mechanisms numerous reactions involving many key reactive combustion species: CH[sub 2]O, CH[sub 3]O, CH, NO, NO[sub 2], CH[sub 3]OH, C[sub 2]H[sub 5]OH, i-C[sub 3]H[sub 7]OH, t-C[sub 4]H[sub 9]OH, C[sub 6]H[sub 5], C[sub 5]O and C[sub 6]H[sub 5]O and C[sub 6]H[sub 6], among others. A total of 24 reactive systems have been studied
- …