18 research outputs found

    Vortex Solid-Liquid Transition in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with a High Density of Strong Pins

    Full text link
    The introduction of a large density of columnar defects in %underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals does not, at sufficiently low vortex densities, increase the irreversibility line beyond the first order transition (FOT) field of pristine crystals. At such low fields, the flux line wandering length rwr_{w} behaves as in pristine %Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals. Next, vortex positional correlations along the cc--axis in the vortex Bose glass at fields above the FOT are smaller than in the low--field vortex solid. Third, the Bose-glass-to-vortex liquid transition is signaled by a rapid decrease in c-axis phase correlations. These observations are understood in terms of the ``discrete superconductor'' model.Comment: 4 pages, 4 figures Submitted to Phys. Rev. B Rapid Comm. 16-1-2004 Revised version 18-3-200

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7δ_{7-\delta} (γ8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    Microwave generation in synchronized semiconductor superlattices

    Get PDF
    We study high-frequency generation in a system of electromagnetically coupled semiconductor superlattices fabricated on the same doped substrate. Applying a bias voltage to a single superlattice generates high-frequency current oscillations. We demonstrate that within a certain range of the applied voltage, the current oscillations within the superlattices can be self-synchronized, which leads to a dramatic rise in the generated microwave power. These results, which are in good agreement with our numerical model, open a promising practical route towards the design of high-power miniature microwave generators

    Potential and current distribution in strongly anisotropic Bi(2)Sr(2) CaCu(2)O(8) single crystals at current breakdown

    Full text link
    Experiments on potential differences in the low-temperature vortex solid phase of monocrystalline platelets of superconducting Bi(2)Sr(2)CaCu(2)O(8) (BSCCO) subjected to currents driven either through an "ab" surface or from one such surface to another show evidence of a resistive/nonresistive front moving progressively out from the current contacts as the current increases. The depth of the resistive region has been measured by a novel in-depth voltage probe contact. The position of the front associated with an injection point appears to depend only on the current magnitude and not on its withdrawal point. It is argued that enhanced nonresistive superconducting anisotropy limits current penetration to less than the London length and results in a flat rectangular resistive region with simultaneous "ab" and "c" current breakdown which moves progressively out from the injection point with increasing current. Measurements in "ab" or "c" configurations are seen to give the same information, involving both ab-plane and c-axis conduction properties.Comment: 9 pages, 13 figures, typo error corrected, last section was refine

    Theory of c-axis Josephson tunneling in d-wave superconductors

    Full text link
    The temperature and angular dependence of the c-axis Josephson current and the superfluid density in layered d-wave superconductors are studied within the framework of an extended Ambegaokar-Baratoff formalism. In particular, the effects of angle-dependent tunneling matrix elements and Andreev scattering at grain boundaries are taken into account. These lead to strong corrections of the low-temperature behavior of the plasma frequency and the Josephson current. Recent c-axis measurements on the cuprate high-temperature superconductors HgBa_2CaCu_{1+\delta} and Bi_2Sr_2CaCu_2O_{8+\delta} can therefore be interpreted to be consistent with a d-wave order parameter.Comment: Revtex, 4 pages with 4 eps figures, to appear in PRB R

    Josephson Plasma in RuSr2GdCu2O8

    Full text link
    Josephson plasma in RuSr2_{2}GdCu2_{2}O8_{8}, Ru1x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), and RuSr2_{2}Eu2x_{2-x}Cex_{x}Cu2_{2}O10_{10} (x = 0.5) compounds is investigated by the sphere resonance method. The Josephson plasma is observed in a low-frequency region (around 8.5 cm1^{-1} at T \ll TcT_{c}) for ferromagnetic RuSr2_{2}GdCu2_{2}O8_{8}, while it increases to 35 cm1^{-1} for non-ferromagnetic Ru1x_{1-x}Sr2_{2}GdCu2+x_{2+x}O8_{8} (x = 0.3), which represents a large reduction in the Josephson coupling at ferromagnetic RuO2_{2} block layers. The temperature dependence of the plasma does not shift to zero frequency ({\it i.e.} jcj_{c} = 0) at low temperatures, indicating that there is no transition from the 0-phase to the π\pi-phase in these compounds. The temperature dependence and the oscillator strength of the peak are different from those of other non-magnetic cuprates, and the origins of these anomalies are discussed.Comment: to appear in Phys. Rev.B Rapid Com

    Absence of the zero bias peak in vortex tunneling spectra of high temperature superconductors?

    Full text link
    The c-axis tunneling matrix of high-Tc superconductors is shown to depend strongly on the in-plane momentum of electrons and vanish along the four nodal lines of the d(x^2-y^2)-wave energy gap. This anisotropic tunneling matrix suppresses completely the contribution of the most extended quasiparticles in the vortex core to the c-axis tunneling current and leads to a spectrum similar to that of a nodeless superconductor. Our results give a natural explanation of the absence of the zero bias peak as well as other features observed in the vortex tunneling spectra of high-Tc cuprates.Comment: 4 pages 3 figures, minor corrections, to appear in Phys Rev

    Quasiparticle and Cooper Pair Tunneling in the Vortex State of Bi-2212

    Full text link
    From measurements of the c-axis I-V characteristics of intrinsic Josephson junctions in Bi_2Sr_2CaCu_2O_{8+delta} (Bi-2212) mesas we obtain the field dependence (H || c) of the quasiparticle (QP) conductivity, sigma_q(H,T), and of the Josephson critical current density, J_c(H,T). The quasiparticle conductivity sigma_q(H) increases sharply with H and reaches a plateau at 0.05 T <H< 0.3 T. We explain such behavior by the dual effect of supercurrents around vortices. First, they enhance the QP DOS, leading to an increase of sigma_q with H at low H and, second, they enhance the scattering rate for specular tunneling as pancakes become disordered along the c-axis at higher H, leading to a plateau at moderate H.Comment: 4 pages, 4 figure

    Crystallization of the ordered vortex phase in high temperature superconductors

    Full text link
    The Landau-Khalatnikov time-dependent equation is applied to describe the crystallization process of the ordered vortex lattice in high temperature superconductors after a sudden application of a magnetic field. Dynamic coexistence of a stable ordered phase and an unstable disordered phase, with a sharp interface between them, is demonstrated. The transformation to the equilibrium ordered state proceeds by movement of this interface from the sample center toward its edge. The theoretical analysis dictates specific conditions for the creation of a propagating interface, and provides the time scale for this process.Comment: 8 pages and 3 figures; to be published in Phys. Rev. B (Rapid Communications section

    Novel features of Josephson flux-flow in Bi-2212: contribution of in-plane dissipation, coherent response to mm-wave radiation, size effect

    Full text link
    We studied Josephson flux-flow (JFF) in Bi-2212 stacks fabricated from single crystal whiskers by focused ion beam technique. For long junctions with the in-plane sizes 30 x 2 (mu)m^2, we found considerable contribution of the in-plane dissipation to the JFF resistivity, (rho)_(Jff), at low temperatures. According to recent theory [A. Koshelev, Phys. Rev. B62, R3616 (2000)] that results in quadratic type dependence of (rho)_(Jff)(B) with the following saturation. The I-V characteristics in JFF regime also can be described consistently by that theory. In JFF regime we found Shapiro-step response to the external mm-wave radiation. The step position is proportional to the frequency of applied microwaves and corresponds to the Josephson emission from all the 60 intrinsic junctions of the stack being synchronized. That implies the coherence of the JFF over the whole thickness of the stack and demonstrates possibility of synchronization of intrinsic junctions by magnetic field. We also found a threshold character of an appearance of the JFF branch on the I-V characteristic with the increase of magnetic field, the threshold field B_t being scaled with the junction size perpendicular to the field L (L = 30-1.4 (mu)m), as B_t = (Phi)_0/Ls, where (Phi)_0 is flux quantum, s is the interlayer spacing. On the I-V characteristics of small stacks in the JFF regime we found Fiske-step features associated with resonance of Josephson radiation with the main resonance cavity mode in transmission line formed by stack.Comment: 20 pages including 8 figures, submitted to the proceedings of the Superconducting Device Physics (SDP-2001) conference, Tokyo, June 200
    corecore