Experiments on potential differences in the low-temperature vortex solid
phase of monocrystalline platelets of superconducting Bi(2)Sr(2)CaCu(2)O(8)
(BSCCO) subjected to currents driven either through an "ab" surface or from one
such surface to another show evidence of a resistive/nonresistive front moving
progressively out from the current contacts as the current increases. The depth
of the resistive region has been measured by a novel in-depth voltage probe
contact. The position of the front associated with an injection point appears
to depend only on the current magnitude and not on its withdrawal point. It is
argued that enhanced nonresistive superconducting anisotropy limits current
penetration to less than the London length and results in a flat rectangular
resistive region with simultaneous "ab" and "c" current breakdown which moves
progressively out from the injection point with increasing current.
Measurements in "ab" or "c" configurations are seen to give the same
information, involving both ab-plane and c-axis conduction properties.Comment: 9 pages, 13 figures, typo error corrected, last section was refine