70 research outputs found

    Effect of the Coulomb repulsion on the {\it ac} transport through a quantum dot

    Full text link
    We calculate in a linear response the admittance of a quantum dot out of equilibrium. The interaction between two electrons with opposite spins simultaneously residing on the resonant level is modeled by an Anderson Hamiltonian. The electron correlations lead to the appearence of a new feature in the frequency dependence of the conductance. For certain parameter values there are two crossover frequencies between a capacitive and an inductive behavior of the imaginary part of the admittance. The experimental implications of the obtained results are briefly discussed.Comment: 13 pages, REVTEX 3.0, 2 .ps figures from [email protected], NUB-308

    Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates

    Full text link
    A theoretical study of single electron capacitance spectroscopy in quantum dots is presented. Exact diagonalizations and the unrestricted Hartree-Fock approximation have been used to shed light over some of the unresolved aspects. The addition spectra of up to 15 electrons is obtained and compared with the experiment. We show evidence for understanding the decrease of the single electron tunneling rates in terms of the behavior of the spectral weight function. (To appear in Phys. Rev. B (Rapid Comm.))Comment: 10 pages, Revtex, hard copy or PostScript Figures upon request on [email protected]

    Acoustic Phonon-Assisted Resonant Tunneling via Single Impurities

    Full text link
    We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the I(V)I(V) characteristics measured at 30mK, the contribution of individual donors is resolved and the fingerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.Comment: accepted in Phys. Rev.

    Re-entrant resonant tunneling

    Full text link
    We study the effect of electron-electron interactions on the resonant-tunneling spectroscopy of the localized states in a barrier. Using a simple model of three localized states, we show that, due to the Coulomb interactions, a single state can give rise to two resonant peaks in the conductance as a function of gate voltage, G(Vg). We also demonstrate that an additional higher-order resonance with Vg-position in between these two peaks becomes possibile when interactions are taken into account. The corresponding resonant-tunneling process involves two-electron transitions. We have observed both these effects in GaAs transistor microstructures by studying the time evolution of three adjacent G(Vg) peaks caused by fluctuating occupation of an isolated impurity (modulator). The heights of the two stronger peaks exibit in-phase fluctuations. The phase of fluctuations of the smaller middle peak is opposite. The two stronger peaks have their origin in the same localized state, and the third one corresponds to a co-tunneling process.Comment: 9 pages, REVTeX, 4 figure

    Correlation-function spectroscopy of inelastic lifetime in heavily doped GaAs heterostructures

    Get PDF
    Measurements of resonant tunneling through a localized impurity state are used to probe fluctuations in the local density of states of heavily doped GaAs. The measured differential conductance is analyzed in terms of correlation functions with respect to voltage. A qualitative picture based on the scaling theory of Thouless is developed to relate the observed fluctuations to the statistics of single particle wavefunctions. In a quantitative theory correlation functions are calculated. By comparing the experimental and theoretical correlation functions the effective dimensionality of the emitter is analyzed and the dependence of the inelastic lifetime on energy is extracted.Comment: 41 pages, 14 figure

    Enhanced fluctuations of the tunneling density of states near bottoms of Landau bands measured by a local spectrometer

    Full text link
    We have found that the local density of states fluctuations (LDOSF) in a disordered metal, detected using an impurity in the barrier as a spectrometer, undergo enhanced (with respect to SdH and dHvA effects) oscillations in strong magnetic fields, omega _c\tau > 1. We attribute this to the dominant role of the states near bottoms of Landau bands which give the major contribution to the LDOSF and are most strongly affected by disorder. We also demonstrate that in intermediate fields the LDOSF increase with B in accordance with the results obtained in the diffusion approximation.Comment: 4 pages, 4 figure

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEℏωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.
    • 

    corecore