3,569 research outputs found

    Heptagon Amplitude in the Multi-Regge Regime

    Full text link
    As we have shown in previous work, the high energy limit of scattering amplitudes in N=4 supersymmetric Yang-Mills theory corresponds to the infrared limit of the 1-dimensional quantum integrable system that solves minimal area problems in AdS5. This insight can be developed into a systematic algorithm to compute the strong coupling limit of amplitudes in the multi-Regge regime through the solution of auxiliary Bethe Ansatz equations. We apply this procedure to compute the scattering amplitude for n=7 external gluons in different multi-Regge regions at infinite 't Hooft coupling. Our formulas are remarkably consistent with the expected form of 7-gluon Regge cut contributions in perturbative gauge theory. A full description of the general algorithm and a derivation of results will be given in a forthcoming paper.Comment: 14 page

    Form and function in hillslope hydrology : in situ imaging and characterization of flow-relevant structures

    Get PDF
    Thanks to Elly Karle and the Engler-BunteInstitute, KIT, for the IC measurements of bromide. We are grateful to Selina Baldauf, Marcel Delock, Razije Fiden, Barbara Herbstritt, Lisei Köhn, Jonas Lanz, Francois Nyobeu, Marvin Reich and Begona Lorente Sistiaga for their support in the lab and during fieldwork, as well as Markus Morgner and Jean Francois Iffly for technical support and Britta Kattenstroth for hydrometeorological data acquisition. Laurent Pfister and Jean-Francois Iffly from the Luxembourg Institute of Science and Technology (LIST) are acknowledged for organizing the permissions for the experiments. Moreover, we thank Markus Weiler (University of Freiburg) for his strong support during the planning of the hillslope experiment and the preparation of the manuscript. This study is part of the DFG-funded CAOS project “From Catchments as Organised Systems to Models based on Dynamic Functional Units” (FOR 1598). The manuscript was substantially improved based on the critical and constructive comments of the anonymous reviewers, Christian Stamm and Alexander Zimmermann, and the editor Ross Woods during the open review process, which is highly appreciated.Peer reviewedPublisher PD

    Form and function in hillslope hydrology : Characterization of subsurface ow based on response observations

    Get PDF
    Acknowledgements. We are grateful to Marcel Delock, Lisei Köhn, and Marvin Reich for their support during fieldwork, as well as Markus Morgner and Jean Francois Iffly for technical support, Britta Kattenstroth for hydrometeorological data acquisition and isotope sampling, and Barbara Herbstritt and Begoña Lorente Sistiaga for laboratory work. Laurent Pfister and Jean-Francois Iffly from the Luxembourg Institute of Science and Technology (LIST) are acknowledged for organizing the permissions for the experiments and providing discharge data for Weierbach 1 and Colpach. We also want to thank Frauke K. Barthold and the two anonymous reviewers, whose thorough remarks greatly helped to improve the manuscript. This study is part of DFG-funded CAOS project “From Catchments as Organised Systems to Models based on Dynamic Functional Units” (FOR 1598). The article processing charges for this open-access publication were covered by a Research Centre of the Helmholtz Association.Peer reviewedPublisher PD

    Sub-kHz lasing of a CaF_2 Whispering Gallery Mode Resonator Stabilized Fiber Ring Laser

    Full text link
    We utilize a high quality calcium fluoride whispering-gallery-mode resonator to stabilize a simple erbium doped fiber ring laser with an emission frequency of 196 THz (wavelenght 1530 nm) to a linewidth below 650 Hz. This corresponds to a relative stability of 3.3 x 10^(-12) over 16 \mus. In order to characterize the linewidth we use two identical self-built lasers and a commercial laser to determine the individual lasing linewidth via the three-cornered hat method.Comment: 4 pages, 3 figure

    Health professionals' perspective on the promotion of e-mental health apps in the context of maternal depression.

    Get PDF
    Our study focuses on exploring (1) the intention of health professionals to use and recommend e-mental health applications, (2) how this intention of health professionals might be influenced, (3) which group of health professionals might be most accessible to promote e-mental health applications for maternal depression, and (4) for which tasks they rate them to be most useful. Based on a questionnaire informed by the theory of planned behavior, we collected 131 responses of U.S., Spanish, and Swiss health professionals in the field of pregnancy and maternal care (including psychologists, psychiatrists, midwives, and doctors) by means of an online survey. We analyzed the gathered data applying a structured equation model. Our study reveals that health professionals would in general intend to recommend and use e-mental health applications. However, their attitude towards e-mental health applications varies regarding the respective use cases and also differs among health professions. We offer three alternative propositions for private or public organizations, associations, or any other entity whose purpose is service to the community for introducing e-mental health applications into practice

    The Bethe Roots of Regge Cuts in Strongly Coupled N=4 SYM Theory

    Full text link
    We describe a general algorithm for the computation of the remainder function for n-gluon scattering in multi-Regge kinematics for strongly coupled planar N=4 super Yang-Mills theory. This regime is accessible through the infrared physics of an auxiliary quantum integrable system describing strings in AdS5xS5. Explicit formulas are presented for n=6 and n=7 external gluons. Our results are consistent with expectations from perturbative gauge theory. This paper comprises the technical details for the results announced in arXiv:1405.3658 .Comment: 42 pages, 9 figure

    Micro black holes in the laboratory

    Get PDF
    The possibility of creating microscopic black holes is one of the most exciting predictions for the LHC, with potentially major consequences for our current understanding of physics. We briefly review the theoretical motivation for micro black hole production, and our understanding of their subsequent evolution. Recent work on modelling the radiation from quantum-gravity-corrected black holes is also discussed
    corecore