375 research outputs found
Adaptation to Hypoxia: A Chimera?
"The Chimera was, according to Greek mythology, a monstrous fire-breathing hybrid creature of Lycia in Asia Minor, composed of the parts of more than one animal [...]
Comparative response of brain to chronic hypoxia and hyperoxia
Two antithetic terms, hypoxia and hyperoxia, i.e., insufficient and excess oxygen availability with respect to needs, are thought to trigger opposite responses in cells and tissues. This review aims at summarizing the molecular and cellular mechanisms underlying hypoxia and hyperoxia in brain and cerebral tissue, a context that may prove to be useful for characterizing not only several clinically relevant aspects, but also aspects related to the evolution of oxygen transport and use by the tissues. While the response to acute hypoxia/hyperoxia presumably recruits only a minor portion of the potentially involved cell machinery, focusing into chronic conditions, instead, enables to take into consideration a wider range of potential responses to oxygen-linked stress, spanning from metabolic to genic. We will examine how various brain subsystems, including energetic metabolism, oxygen sensing, recruitment of pro-survival pathways as protein kinase B (Akt), mitogen-activated protein kinases (MAPK), neurotrophins (BDNF), erythropoietin (Epo) and its receptors (EpoR), neuroglobin (Ngb), nitric oxide (NO), carbon monoxide (CO), deal with chronic hypoxia and hyperoxia to end-up with the final outcomes, oxidative stress and brain damage. A more complex than expected pattern results, which emphasizes the delicate balance between the severity of the stress imposed by hypoxia and hyperoxia and the recruitment of molecular and cellular defense patterns. While for certain functions the expectation that hypoxia and hyperoxia should cause opposite responses is actually met, for others it is not, and both emerge as dangerous treatments
The separate effects of H+ and 2,3-DPG on the oxygen equilibrium curve of human blood
Addition of non-saturating amounts of 2,3-DPG (2,3-diphosphoglycerate) within the red cell (2,3-DPG/haemoglobin less than 1) initially reduces Hill's parameter, n. With increasing 2,3-DPG/haemoglobin, n increases until a maximum is reached at 2,3-DPG/haemoglobin greater than 1. Thus, 2,3-DPG influences the shape as well as the position of the whole blood oxygen equilibrium curve (OEC). The importance of this effect on the oxygen carrying capacity of the blood is considered. The effect of 2,3-DPG on the position of the OEC (p50, the PO2 at one-half maximal O2 saturation) is via its allosteric effect on haemoglobin at 2,3-DPG/haemoglobin less than 1. Above that ratio, its effect is to reduce intracellular relative to the extracellular pH
The dissociation of carbon monoxide from hemoglobin intermediate.
To investigate the mechanism of allosteric switching in human hemoglobin, we have studied the dissociation of the ligand (CO) from several intermediate ligation states by a stopped-flow kinetic technique that utilizes competitive binding of CO by microperoxidase. The hemoglobin species investigated include Hb(CO)4, the diliganded symmetrical species (alpha beta-CO)2 and (alpha-CO beta)2, and the di- and monoliganded asymmetrical species (alpha-CO beta-CO)(alpha beta), (alpha-CO beta)(alpha beta-CO), (alpha beta-CO) (alpha beta), and (alpha-CO beta)(alpha beta). They were obtained by rapid reduction with dithionite of the corresponding valence intermediates that in turn were obtained by chromatography or by hybridization. The nature and concentration of the intermediates were determined by isoelectric focusing at −25 degrees C. The study was performed at varying hemoglobin concentrations (0.1, 0.02, and 0.001 mM [heme]), pH (6.0, 7.0, 8.0), with and without inositol hexaphosphate. The results indicate that: (a) hemoglobin concentration in the 0.1-0.02 mM range does not significantly affect the kinetic rates; (b) the alpha chains dissociate CO faster than the beta chains; (c) the symmetrical diliganded intermediates show cooperativity with respect to ligand dissociation that disappears in the presence of inositol hexaphosphate; (d) the monoliganded intermediates dissociate CO faster than the diliganded intermediates; (e) the asymmetrical diliganded intermediates are functionally different from the symmetrical species
Effects of PDE-5 Inhibition on the Cardiopulmonary System After 2 or 4 Weeks of Chronic Hypoxia.
In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation. We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition.
Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O <sub>2</sub> ) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day).
Two-week hypoxia changed the body weight (- 31% vs. - 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration.
Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease
Biochemical consequences of electrical pacing in ischemic-reperfused isolated rat hearts
It is still unclear if performance recovery in postischemic hearts is related to their tissue level of high-energy phosphates before reflow. To test the existence of this link, we monitored performance, metabolism and histological damage in isolated, crystalloid-perfused rat hearts during 20 min of low-flow ischemia (90% coronary flow reduction) and reflow. To prevent interference from different ischemia times and perfusing media compositions, the ischemic ATP level was varied by changing energy demand (electrical pacing at 330 min-1). Under full coronary flow conditions, work output, as well as ATP and phosphocreatine contents were the same in control, spontaneously contracting (n = 23) and paced (n = 21) hearts. During low-flow ischemia, the higher work output (p < 0.0001) in paced hearts decreased their tissue content of ATP, phosphocreatine and total adenylates and purines (p < 0.05), as opposed to maintained values in control hearts. During reflow, the recovery of mechanical performance and O2 uptake was 94 \ub1 5% and 110 \ub1 9% (p = NS vs. baseline) in controls, vs. 71 \ub1 5% and 74 \ub1 6% in paced hearts (p < 0.004 vs. baseline). The levels of ATP and total adenylates and purines remained constant in control, but were markedly depressed (p < 0.05 vs. baseline) in paced hearts. Phosphocreatine+creatine was the same in both groups. These data, together with the observed lack of creatine kinase leakage and of structural damage, indicate that myocardial recovery during reflow reflects the tissue level of ATP, phosphocreatine and total adenylates and purines during ischemia, regardless of physical cell damage
Detection of haemoglobins with abnormal oxygen affinity by single blood gas analysis and 2,3-diphosphoglycerate measurement
The aim is to determine if a single measurement of blood 2,3-diphosphoglycerate combined with gas analysis (pH, PCO2, PO2 and saturation) can identify the cause of an altered blood-oxygen affinity: the presence of an abnormal haemoglobin or a red cell disorder. The population (n=94) was divided into healthy controls (A, n=14), carriers of red cell disorders (B, n=72) and carriers of high oxygen affinity haemoglobins (C, n=8). Those variables were measured both in samples equilibrated at selected PCO2 and PO2 and in venous blood. In the univariable approach applied to equilibrated samples, we correctly identified C subjects in 93.6% or 96.8% of the cases depending on the selected variable, the standard P50 (PO2 at which 50% of haemoglobin is oxygenated) or a composite variable calculated from the above measurements. After introducing the haemoglobin concentration as a further discriminating variable, the A and B subjects were correctly identified in 91.9% or 94.2% of the cases, respectively. These figures become 93.0% or 86.1%, and 93.7% or 94.9% of the cases when using direct readings from venous blood, thereby avoiding the blood equilibration step. This test is feasible also in blood samples stored at 4\ub0C for 48 h, or at room temperature for 8 h
Oxygen affinity of blood in altitude Sherpas
Oxygen equilibrium curves on blood within 6 h from sampling have been estimated from polarographic measurements of oxyhemoglobin concentration, in 13 male 14- to 50-yr old Sherpas residing at 3,850 m above sea level (Kumjung, Nepal). In samples with red blood cell counts = 4.7 +/- 0.8 (SD) x 10(6)/mm3, total hemoglobin concentration [Hb] = 17.0 +/- 1.9 g/dl, and hematocrit = 53.3 +/- 5.0, the mean oxygen half-saturation of hemoglobin (P50) (pH = 7.4 and PCO2 = 40 Torr) was 27.3 +/- 1.8 Torr. The P50 of altitude Sherpas was not significantly different from that of acclimatized lowlanders (28.2 +/- 1.3; n = 7), sea-level Caucasian residents (26.5 +/- 1.0; n = 17), and Sherpas at sea level (27.1; n = 3). The 2,3-diphosphoglyceric acid-to-hemoglobin concentration ratio ([2,3-DPG]/[Hb]) in altitude Sherpas was 1.22 +/- 0.03, the same as that of acclimatized Caucasians (1.22 +/- 0.10). The Bohr effect measured for the blood of one altitude Sherpas by the ratio deltalog P50/deltapH was -0.32 and -0.45 at PCO2 levels of 40 and 20 Torr, respectively. These values are not significantly different from those found in Caucasians at sea level where deltalog P50/deltalpH was -0.35 and -0.42, respectively. It is concluded that the P50 in native highlanders is not significantly different from that observed in sea-level dwellers. [2,3-DPG]/[Hb] at altitude, both in natives and in newcomers, is 20% higher than in sea-level residents
- …