10 research outputs found

    THE USE OF DIAGNOSTIC OPTICAL TOOLS TO ASSES NITROGEN STATUS AND GUIDE FERTILIZATION OF VEGETABLES

    No full text
    Dynamic fertilization management is a way of bringing nutrients to the plant when they are crucial for its development. However, destructive measure- ments of crop nitrogen (N) status are still too costly and time consuming to justify their use, and the implementation of methodologies based on non-destructive, quick, and easy to use tools for plant nutritional status monitoring appears as an appealing opportunity. Several optical tools for plant monitoring have been developed in recent years, and many studies have assessed their ability to discrim- inate plant N status. Such tools can measure at leaf level (hand-held optical instruments) or may consider the canopy of a plant or few plants (portable radiometers) or even measure areas, such as a field, a farm, or a region (aerial photography). The application of vegetation indices, which combine the readings at different wavelengths, may improve the reliability of the collected data, giving a more precise determination of the plant nutritional status. In this article, we report on the state of the art of the available optical tools for plant N status monitoring

    The use of diagnostic optical tools to assess nitrogen status and to guide fertilization of vegetables

    No full text
    Dynamic fertilization management is a way of bringing nutrients to the plant when they are crucial for its development. However, destructive measurements of crop nitrogen (N) status are still too costly and time consuming to justify their use, and the implementation of methodologies based upon non-destructive, quick and easy to use tools for plant nutritional status monitoring appears as an appealing opportunity. Several optical tools for plant monitoring have been developed in recent years and many studies have assessed their ability to discriminate plant N status. Such tools can measure at leaf level (hand-held optical instruments) or may consider the canopy of a plant or few plants (portable radiometers) or even measure areas, such as a field, a farm or a region (aerial photography). The application of vegetation indices, which combine the readings at different wavelengths, may improve the reliability of the collected data, giving a more precise determination of the plant nutritional status. In this paper we report on the state of the art of the available optical tools for plant N status monitoring

    Loss of Halophytism by Interference with SOS1 Expression1[W][OA]

    Get PDF
    The contribution of SOS1 (for Salt Overly Sensitive 1), encoding a sodium/proton antiporter, to plant salinity tolerance was analyzed in wild-type and RNA interference (RNAi) lines of the halophytic Arabidopsis (Arabidopsis thaliana)-relative Thellungiella salsuginea. Under all conditions, SOS1 mRNA abundance was higher in Thellungiella than in Arabidopsis. Ectopic expression of the Thellungiella homolog ThSOS1 suppressed the salt-sensitive phenotype of a Saccharomyces cerevisiae strain lacking sodium ion (Na+) efflux transporters and increased salt tolerance of wild-type Arabidopsis. thsos1-RNAi lines of Thellungiella were highly salt sensitive. A representative line, thsos1-4, showed faster Na+ accumulation, more severe water loss in shoots under salt stress, and slower removal of Na+ from the root after removal of stress compared with the wild type. thsos1-4 showed drastically higher sodium-specific fluorescence visualized by CoroNa-Green, a sodium-specific fluorophore, than the wild type, inhibition of endocytosis in root tip cells, and cell death in the adjacent elongation zone. After prolonged stress, Na+ accumulated inside the pericycle in thsos1-4, while sodium was confined in vacuoles of epidermis and cortex cells in the wild type. RNAi-based interference of SOS1 caused cell death in the root elongation zone, accompanied by fragmentation of vacuoles, inhibition of endocytosis, and apoplastic sodium influx into the stele and hence the shoot. Reduction in SOS1 expression changed Thellungiella that normally can grow in seawater-strength sodium chloride solutions into a plant as sensitive to Na+ as Arabidopsis
    corecore