262 research outputs found

    Observational Learning of New Movement Sequences Is Reflected in Fronto-Parietal Coherence

    Get PDF
    Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10Hz frequency range for translating “seeing” into “doing”. Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational learning (i.e. parts of the MNS as reflected in 10Hz coherence measures) and peripheral structures (i.e. lateral occipital gyrus for alpha; central sulcus for mu) that provide low-level support for observation and motor imagery of action sequences

    Imitation of hand and tool actions is effector-independent

    Get PDF
    Following the theoretical notion that tools often extend one’s body, in the present study, we investigated whether imitation of hand or tool actions is modulated by effector-specific information. Subjects performed grasping actions toward an object with either a handheld tool or their right hand. Actions were initiated in response to pictures representing a grip at an object that could be congruent or incongruent with the required action (grip-type congruency). Importantly, actions could be cued by means of a tool cue, a hand cue, and a symbolic cue (effector-type congruency). For both hand and tool actions, an action congruency effect was observed, reflected in faster reaction times if the observed grip type was congruent with the required movement. However, neither hand actions nor tool actions were differentially affected by the effector represented in the picture (i.e., when performing a tool action, the action congruency effect was similar for tool cues and hand cues). This finding suggests that imitation of hand and tool actions is effector-independent and thereby supports generalist rather than specialist theories of imitation

    Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion

    Get PDF
    Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DD

    Mistakes that affect others: An fMRI study on processing of own errors in a social context

    Get PDF
    In social contexts, errors have a special significance and often bear consequences for others. Thinking about others and drawing social inferences in interpersonal games engages the mentalizing system. We used neuroimaging to investigate the differences in brain activations between errors that affect only agents themselves and errors that additionally influence the payoffs of interaction partners. Activation in posterior medial frontal cortex (pMFC) and bilateral insula was increased for all errors, whereas errors that implied consequences for others specifically activated medial prefrontal cortex (mPFC), an important part of the mentalizing system. The results demonstrate that performance monitoring in social contexts involves additional processes and brain structures compared with individual performance monitoring where errors only have consequences for the person committing them. Taking into account how one’s behavior may affect others is particularly crucial for adapting behavior in interpersonal interactions and joint action

    Joint-action coordination in transferring objects

    Get PDF
    Here we report a study of joint-action coordination in transferring objects. Fourteen dyads were asked to repeatedly reposition a cylinder in a shared workspace without using dialogue. Variations in task constraints concerned the size of the two target regions in which the cylinder had to be (re)positioned and the size and weight of the transferred cylinder. Movements of the wrist, index finger and thumb of both actors were recorded by means of a 3D motion-tracking system. Data analyses focused on the interpersonal transfer of lifting-height and movement-speed variations. Whereas the analyses of variance did not reveal any interpersonal transfer effects targeted data comparisons demonstrated that the actor who fetched the cylinder from where the other actor had put it was systematically less surprised by cylinder-weight changes than the actor who was first confronted with such changes. In addition, a moderate, accuracy-constraint independent adaptation to each other’s movement speed was found. The current findings suggest that motor resonance plays only a moderate role in collaborative motor control and confirm the independency between sensorimotor and cognitive processing of action-related information

    Relationship between Activity in Human Primary Motor Cortex during Action Observation and the Mirror Neuron System

    Get PDF
    The attenuation of the beta cortical oscillations during action observation has been interpreted as evidence of a mirror neuron system (MNS) in humans. Here we investigated the modulation of beta cortical oscillations with the viewpoint of an observed action. We asked subjects to observe videos of an actor making a variety of arm movements. We show that when subjects were observing arm movements there was a significant modulation of beta oscillations overlying left and right sensorimotor cortices. This pattern of attenuation was driven by the side of the screen on which the observed movement occurred and not by the hand that was observed moving. These results are discussed in terms of the firing patterns of mirror neurons in F5 which have been reported to have similar properties

    Larval Development of Aedes aegypti and Aedes albopictus in Peri-Urban Brackish Water and Its Implications for Transmission of Arboviral Diseases

    Get PDF
    Aedes aegypti (Linnaeus) and Aedes albopictus Skuse mosquitoes transmit serious human arboviral diseases including yellow fever, dengue and chikungunya in many tropical and sub-tropical countries. Females of the two species have adapted to undergo preimaginal development in natural or artificial collections of freshwater near human habitations and feed on human blood. While there is an effective vaccine against yellow fever, the control of dengue and chikungunya is mainly dependent on reducing freshwater preimaginal development habitats of the two vectors. We show here that Ae. aegypti and Ae. albopictus lay eggs and their larvae survive to emerge as adults in brackish water (water with <0.5 ppt or parts per thousand, 0.5–30 ppt and >30 ppt salt are termed fresh, brackish and saline respectively). Brackish water with salinity of 2 to 15 ppt in discarded plastic and glass containers, abandoned fishing boats and unused wells in coastal peri-urban environment were found to contain Ae. aegypti and Ae. albopictus larvae. Relatively high incidence of dengue in Jaffna city, Sri Lanka was observed in the vicinity of brackish water habitats containing Ae. aegypti larvae. These observations raise the possibility that brackish water-adapted Ae. aegypti and Ae. albopictus may play a hitherto unrecognized role in transmitting dengue, chikungunya and yellow fever in coastal urban areas. National and international health authorities therefore need to take the findings into consideration and extend their vector control efforts, which are presently focused on urban freshwater habitats, to include brackish water larval development habitats

    Therapeutic Dosing of Acenocoumarol: Proposal of a Population Specific Pharmacogenetic Dosing Algorithm and Its Validation in North Indians

    Get PDF
    Objectives: To develop a population specific pharmacogenetic acenocoumarol dosing algorithm for north Indian patients and show its efficiency in dosage prediction. Methods: Multiple and linear stepwise regression analyses were used to include age, sex, height, weight, body surface area, smoking status, VKORC1-1639 G.A, CYP4F2 1347 G.A, CYP2C9*2,*3 and GGCX 12970 C.G polymorphisms as variables to generate dosing algorithms. The new dosing models were compared with already reported algorithms and also with the clinical data for various performance measures. Odds ratios for association of genotypes with drug sensitive and resistant groups were calculated. Results: The pharmacogenetic dosing algorithm generated by multiple regression analysis explains 41.4 % (p-value,0.001) of dosage variation. Validation of the new algorithm showed its predictive ability to be better than the already established algorithms based on similar variables. Its validity in our population is reflected by increased sensitivity, specificity, accuracy and decreased rates of over- and under- estimation in comparison to clinical data. The VKORC1-1639 G.A polymorphism was found to be strongly associated with acenocoumarol sensitivity according to recessive model. Conclusions: We have proposed an efficient north India specific pharmacogenetic acenocoumarol dosing algorithm whic

    バレイショ近縁種における種の分化 XIII. S.acaule X S.demissumより得た7倍雑種の染色体行動と両親ゲノムの類縁関係

    Get PDF
    中央アンデス産Acaulia群4倍種S. acaule (acl, 2n=48)とメキシコ産Demissa群6倍種S. demissum (dms, 2n=72)のゲノムの類縁関係を明らかにするために, 前者を母本として得た7倍雑種(2n=84)の還元分裂における染色体行動と稔性を調べた。以下その結果を要約する。両種間の交雑は極めて困難で, aclを母とした時のみ受粉花数当り0.02の低率で雑種が得られたにすぎない。得られた雑種は, 両親との形態的比較から, aclの非還元性卵とdmsの還元性花粉の受精に起因するものと推定された。この雑種の第1中期における染色体対合行動は甚だしく多様であったが, その対合型のモードは(12)_+(20)_+8_I, その平均対合頻度は(0.18)_V+(1.11)_+(11.73)_+(18.11)_+(7.26)_Iで, 著しく高頻度の3価形成を示す点が特徴的であった。このような対合行動はその後の染色体行動にも反映し, 第1後期では観察細胞のすべてに平均4.8の遅滞染色体がみられ, 第2中期では94%の細胞が分散染色体を示し, 数的平衡核板頻度は0.6%にすぎなかった。稔性は極めて低く, 調査花粉粒数の27%が一見正常であったが, 自殖及び戻交配のいずれにおいても全く種子を生じなかった。上記の観察結果, 特に高頻度で出現した3価染色体の成因を考察して次の知見を得た。すでにaclはAAA^aA^a, dmsはA^dA^dC_1C_1C_2C_2のゲノム型をもつことが知られているので, 当雑種のゲノム型はAAA^aA^aA^dC_1C_2となる。A^dゲノムは若干の構造的差異はもつもののAゲノム群に属することも知られている。したがって, 当雑種にみられる3価形成は, 主に, aclからのAAとdmsからのA^dの3ゲノム間の染色体対合に由来すると推論でき, 両種はこれらのゲノムの相同性によって相互に関係づけられているものと考えられる。 / Meiotic behavior and fertility were studied in a heptaploid F_1 hybrid (2n=84) obtained from crossing S. acaule (acl, 2n=48) with S. demissum (dms, 2n=72), with the aim of assessing a genomic relationship between the parent species. Crossability between the two species was very low, the number of hybrid plants per pollination being only 0.02. Morphological evidence indicated that the hybrid arose through the union of an unreduced egg of acl and a reduced pollen grain of dms. The hybrid had the mean pairing frequency of (0.18)_V+(1.11)_+(11.73)_+(18.11)_+(7.26)_I per cell at metaphase I, with (12)_+(20)_+8_I as the modal configuration. Its subsequent behaviors were extremely irregular, showing several laggards in all the cells and chromatid bridges in occasional cells at anaphase I and also scattered chromosomes in 94% of the cells at metaphase II. The hybrid gave only 27% stainable pollen and no seed either on selfing or on backcrossing with both parents. The pattern of chromosome pairing found in the hybrid was interpreted in terms of genomic relationship between both parent species. From this, it was suggested that one (A) of the two genomes (designated AA^a) which acl possess in its gametes seems to be closely similar to, but not identical with, one (A^d) of the three genomes (A^dC_1C_2) which dms possess in its gemetes

    Performance related factors are the main determinants of the von Willebrand factor response to exhaustive physical exercise

    Get PDF
    Background: Physical stress triggers the endothelium to release von Willebrand Factor (VWF) from the Weibel Palade bodies. Since VWF is a risk factor for arterial thrombosis, it is of great interest to discover determinants of VWF response to physical stress. We aimed to determine the main mediators of the VWF increase by exhaustive physical exercise. Methods: 105 healthy individuals (18-35 years) were included in this study. Each participant performed an incremental exhaustive exercise test on a cycle ergometer. Respiratory gas exchange measurements were obtained while cardiac function was continuously monitored. Blood was collected at baseline and directly after exhaustion. VWF antigen (VWF:Ag) levels, VWF collagen binding (VWF:CB) levels, ADAMTS13 activity and common variations in Syntaxin Binding Protein-5 (STXBP5, rs1039084 and rs9399599), Syntaxin-2 (STX2, rs7978987) and VWF (promoter, rs7965413) were determined. Results: The median VWF:Ag level at baseline was 0.94 IU/mL [IQR 0.8-1.1] and increased with 47% [IQR 25-73] after exhaustive exercise to a median maximum VWF:Ag of 1.38 IU/mL [IQR 1.1-1.8] (p<0.0001). VWF:CB levels and ADAMTS13 activity both also increased after exhaustive exercise (median increase 43% and 12%, both p<0.0001). The strongest determinants of the VWF:Ag level increase are performance related (p<0.0001). We observed a gender difference in VWF:Ag response to exercise (females 1.2 IU/mL; males 1.7 IU/mL, p = 0.001), which was associated by a difference in performance. Genetic variations in STXBP5, STX2 and the VWF promoter were not associated with VWF:Ag levels at baseline nor with the VWF:Ag increase. Conclusions: VWF:Ag levels strongly increase upon exhaustive exercise and this increase is strongly determined by physical fitness level and the intensity of the exercise, while there is no clear effect of genetic variation in STXBP5, STX2 and the VWF promoter
    corecore