358 research outputs found

    Scaling behavior of the conserved transfer threshold process

    Full text link
    We analyze numerically the critical behavior of an absorbing phase transition in the conserved transfer threshold process. We determined the steady state scaling behavior of the order parameter as a function of both, the control parameter and an external field, conjugated to the order parameter. The external field is realized as a spontaneous creation of active particles which drives the system away from criticality. The obtained results yields that the conserved transfers threshold process belongs to the universality class of absorbing phase transitions in a conserved field.Comment: 6 pages, 8 figures, accepted for publication in Phys. Rev.

    Randmoness and Step-like Distribution of Pile Heights in Avalanche Models

    Full text link
    The paper develops one-parametric family of the sand-piles dealing with the grains' local losses on the fixed amount. The family exhibits the crossover between the models with deterministic and stochastic relaxation. The mean height of the pile is destined to describe the crossover. The height's densities corresponding to the models with relaxation of the both types tend one to another as the parameter increases. These densities follow a step-like behaviour in contrast to the peaked shape found in the models with the local loss of the grains down to the fixed level [S. Lubeck, Phys. Rev. E, 62, 6149, (2000)]. A spectral approach based on the long-run properties of the pile height considers the models with deterministic and random relaxation more accurately and distinguishes the both cases up to admissible parameter values.Comment: 5 pages, 5 figure

    Crossover phenomenon in self-organized critical sandpile models

    Full text link
    We consider a stochastic sandpile where the sand-grains of unstable sites are randomly distributed to the nearest neighbors. Increasing the value of the threshold condition the stochastic character of the distribution is lost and a crossover to the scaling behavior of a different sandpile model takes place where the sand-grains are equally transferred to the nearest neighbors. The crossover behavior is numerically analyzed in detail, especially we consider the exponents which determine the scaling behavior.Comment: 6 pages, 9 figures, accepted for publication in Physical Review

    Moment analysis of the probability distributions of different sandpile models

    Full text link
    We reconsider the moment analysis of the Bak-Tang-Wiesenfeld and the Manna sandpile model in two and three dimensions. In contrast to recently performed investigations our analysis turns out that the models are characterized by different scaling behavior, i.e., they belong to different universality classes.Comment: 6 pages, 6 figures, accepted for publication in Physical Review

    Tricritical directed percolation

    Full text link
    We consider a modification of the contact process incorporating higher-order reaction terms. The original contact process exhibits a non-equilibrium phase transition belonging to the universality class of directed percolation. The incorporated higher-order reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous phase transitions is separated by a tricritical point from a line of discontinuous phase transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we determine the critical exponents, various universal scaling functions as well as universal amplitude combinations

    Green biomass – protein production through bio-refining.

    Get PDF
    The aim of this report is to summarize our present knowledge on the bio-technical as well as economic issues in relation to value creation of green biomass in Denmark. This includes many types of knowledge from the different types of actors included in activities going on at present in this field. To start the work, a kick-off workshop was held in Copenhagen in January 2016, where a range of stakeholders from many fields enthusiastically expressed their views and ideas as regards what to include and take into account in the report. We have tried to include these as far as possible. Thus a number of persons have contributed directly in the writing process whereas as others have contributed with particular overall insight

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur

    The Bak-Tang-Wiesenfeld sandpile model around the upper critical dimension

    Full text link
    We consider the Bak-Tang-Wiesenfeld sandpile model on square lattices in different dimensions (D>=6). A finite size scaling analysis of the avalanche probability distributions yields the values of the distribution exponents, the dynamical exponent, and the dimension of the avalanches. Above the upper critical dimension D_u=4 the exponents equal the known mean field values. An analysis of the area probability distributions indicates that the avalanches are fractal above the critical dimension.Comment: 7 pages, including 9 figures, accepted for publication in Physical Review
    corecore