14,143 research outputs found
Multi-agent evolutionary systems for the generation of complex virtual worlds
Modern films, games and virtual reality applications are dependent on
convincing computer graphics. Highly complex models are a requirement for the
successful delivery of many scenes and environments. While workflows such as
rendering, compositing and animation have been streamlined to accommodate
increasing demands, modelling complex models is still a laborious task. This
paper introduces the computational benefits of an Interactive Genetic Algorithm
(IGA) to computer graphics modelling while compensating the effects of user
fatigue, a common issue with Interactive Evolutionary Computation. An
intelligent agent is used in conjunction with an IGA that offers the potential
to reduce the effects of user fatigue by learning from the choices made by the
human designer and directing the search accordingly. This workflow accelerates
the layout and distribution of basic elements to form complex models. It
captures the designer's intent through interaction, and encourages playful
discovery
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
During division it is of primary importance for a cell to correctly determine
the site of cleavage. The bacterium Escherichia coli divides in the center,
producing two daughter cells of equal size. Selection of the center as the
correct division site is in part achieved by the Min-proteins. They oscillate
between the two cell poles and thereby prevent division at these locations.
Here, a phenomenological description for these oscillations is presented, where
lateral interactions between proteins on the cell membrane play a key role.
Solutions to the dynamic equations are compared to experimental findings. In
particular, the temporal period of the oscillations is measured as a function
of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog
Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data
Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis
Combining cellular and gene therapy approaches for treatment of intracranial tumors.
New treatments are needed for brain metastasis, which is associated with high morbidity and mortality. Two novel cellular and gene therapy modalities were evaluated in xenograft models for human breast cancer. The individual and especially the combined treatments with alloreactive cytotoxic T lymphocytes and replicating retroviral vectors coding for prodrug activating enzymes followed later with nontoxic prodrug demonstrated efficacy without off-target effects
Information Content in Data Sets for a Nucleated-Polymerization Model
We illustrate the use of tools (asymptotic theories of standard error
quantification using appropriate statistical models, bootstrapping, model
comparison techniques) in addition to sensitivity that may be employed to
determine the information content in data sets. We do this in the context of
recent models [23] for nucleated polymerization in proteins, about which very
little is known regarding the underlying mechanisms; thus the methodology we
develop here may be of great help to experimentalists
The development of a solar powered residential heating and cooling system
A solar energy collector design is disclosed that would be efficient for both energy transfer and fluid flow, based upon extensive parametric analyses. Thermal design requirements are generated for the energy storage systems which utilizes sensible heat storage in water. Properly size system components (including the collector and storage) and a practical, efficient total system configuration are determined by means of computer simulation of system performance
- ā¦