998 research outputs found

    Elimination of Clock Jitter Noise in Spaceborn Laser Interferometers

    Get PDF
    Space gravitational wave detectors employing laser interferometry between free-flying spacecraft differ in many ways from their laboratory counterparts. Among these differences is the fact that, in space, the end-masses will be moving relative to each other. This creates a problem by inducing a Doppler shift between the incoming and outgoing frequencies. The resulting beat frequency is so high that its phase cannot be read to sufficient accuracy when referenced to state-of-the-art space-qualified clocks. This is the problem that is addressed in this paper. We introduce a set of time-domain algorithms in which the effects of clock jitter are exactly canceled. The method employs the two-color laser approach that has been previously proposed, but avoids the singularities that arise in the previous frequency-domain algorithms. In addition, several practical aspects of the laser and clock noise cancellation schemes are addressed.Comment: 20 pages, 5 figure

    The Effects of Orbital Motion on LISA Time Delay Interferometry

    Full text link
    In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be canceled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable. The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Delta-Sagnac variables, one of which accomplishes the same goal as the symmetric Sagnac variable to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of 5 Hz per root Hz.Comment: 12 pages, 2 figure

    Data Processing for LISA's Laser Interferometer Tracking System (LITS)

    Get PDF
    The purpose of this paper is twofold. First, we will present recent results on the data processing for LISA, including algorithms for elimination of clock jitter noise and discussion of the generation of the data averages that will eventually need to be telemetered to the ground. Second, we will argue, based partly on these results, that a laser interferometer tracking system (LITS) that employs independent lasers in each spacecraft is preferable for reasons of simplicity to that in which the lasers in two of the spacecraft are locked to the incoming beam from the third.Comment: 5 pages, Proceedings of the Third LISA Symposium (Golm, Germany, 2000

    The information content of gravitational wave harmonics in compact binary inspiral

    Get PDF
    The nonlinear aspect of gravitational wave generation that produces power at harmonics of the orbital frequency, above the fundamental quadrupole frequency, is examined to see what information about the source is contained in these higher harmonics. We use an order (4/2) post-Newtonian expansion of the gravitational wave waveform of a binary system to model the signal seen in a spaceborne gravitational wave detector such as the proposed LISA detector. Covariance studies are then performed to determine the ultimate accuracy to be expected when the parameters of the source are fit to the received signal. We find three areas where the higher harmonics contribute crucial information that breaks degeneracies in the model and allows otherwise badly-correlated parameters to be separated and determined. First, we find that the position of a coalescing massive black hole binary in an ecliptic plane detector, such as OMEGA, is well-determined with the help of these harmonics. Second, we find that the individual masses of the stars in a chirping neutron star binary can be separated because of the mass dependence of the harmonic contributions to the wave. Finally, we note that supermassive black hole binaries, whose frequencies are too low to be seen in the detector sensitivity window for long, may still have their masses, distances, and positions determined since the information content of the higher harmonics compensates for the information lost when the orbit-induced modulation of the signal does not last long enough to be apparent in the data.Comment: 13 pages, 5 figure

    Sensitivity curves for spaceborne gravitational wave interferometers

    Get PDF
    To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are corrected, and the first (mostly) analytic calculation of the gravitational wave transfer function is presented. Example sensitivity curve calculations are presented for the proposed LISA interferometer. We find that previous treatments of LISA have underestimated its sensitivity by a factor of 3\sqrt{3}.Comment: 27 pages + 5 figures, REVTeX, accepted for publication in Phys Rev D; Update reflects referees comments, figure 3 clarified, figure 5 corrected for LISA baselin

    LATOR Covariance Analysis

    Full text link
    We present results from a covariance study for the proposed Laser Astrometric Test of Relativity (LATOR) mission. This mission would send two laser-transmitter spacecraft behind the Sun and measure the relative gravitational light bending of their signals using a hundred-meter-baseline optical interferometer to be constructed on the International Space Station. We assume that each spacecraft is equipped with a <1.9×1013ms2Hz1/2 < 1.9 \times 10^{-13} \mathrm{m} \mathrm{s}^2 \mathrm{Hz}^{-1/2} drag-free system and assume approximately one year of data. We conclude that the observations allow a simultaneous determination of the orbit parameters of the spacecraft and of the Parametrized Post-Newtonian (PPN) parameter γ\gamma with an uncertainty of 2.4×1092.4 \times 10^{-9}. We also find a 6×1096 \times 10^{-9} determination of the solar quadrupole moment, J2J_2, as well as the first measurement of the second-order post-PPN parameter δ\delta to an accuracy of about 10310^{-3}.Comment: 9 pages, 3 figures. first revision: minor changes to results. Second revision: additional discussion of orbit modelling and LATOR drag-free system requirement feasibility. Added references to tables I and V (which list PPN parameter uncertainties), removed word from sentence in Section III. 3rd revision: removed 2 incorrect text fragments (referring to impact parameter as distance of closest approach) and reference to upcoming publication of ref. 2, removed spurious gamma from eq. 1 - Last error is still in cqg published versio

    LISA data analysis I: Doppler demodulation

    Full text link
    The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phase and frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleterious affect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signal relative to the instrument noise. We describe a simple method for removing the dominant, Doppler, component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, and provides a quick way to determine the sky locations and frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde

    Static post-Newtonian equivalence of GR and gravity with a dynamical preferred frame

    Full text link
    A generally covariant extension of general relativity (GR) in which a dynamical unit timelike vector field is coupled to the metric is studied in the asymptotic weak field limit of spherically symmetric static solutions. The two post-Newtonian parameters known as the Eddington-Robertson-Schiff parameters are found to be identical to those in the case of pure GR, except for some non-generic values of the coefficients in the Lagrangian.Comment: 13 pages; v.2: minor editing, signs corrected, version to appear in PRD; v. 3: signs corrected in eqn (3
    corecore