151 research outputs found

    Lifshitz transition in the double-core vortex in 3He-B

    Get PDF
    We study the spectrum of fermion states localized within the vortex core of a weak-coupling p-wave superfluid. The low energy spectrum consists of two anomalous branches that cross the Fermi level as functions of the impact parameter, and generate large density of states at the locations of the half cores of the vortex. Fermi liquid interactions significantly change the vortex structure, which leads to Lifshitz transition in the effective Fermi surface of the vortex core fermions. We apply the results to revise the interpretation of an experiment on rotational dynamics of vortices in superfluid 3He-B.Comment: 11 pages, 6 figures, updated to the published versio

    Transport through superconductor/magnetic dot/superconductor structures

    Full text link
    The coupling of two s-wave superconductors through a small magnetic dot is discussed. Assuming that the dot charging energy is small compared to the superconducting gap, EcΔE_c\ll \Delta, and that the moment of the dot is classical, we develop a simple theory of transport through the dot. The presence of the magnetic dot will position Andreev bound states within the superconducting gap at energies tunable with the magnetic properties of the dot. Studying the Josephson coupling it is shown that the constructed junction can be tuned from a "0" to a "π\pi"-junction via a degenerate two-level state either by changing the magnetic moment of the dot or by changing temperature. Furthermore, it is shown that details of the magnetic dot can be extracted from the sub-harmonic structure in the current-voltage characteristics of the junction.Comment: 5 pages, 4 figures, paper presented at the conference SDP 2001 in Tokyo on June 2

    Low-Temperature Thermal Conductivity of Superconductors with Gap Nodes

    Get PDF

    Nonlinear magnetic field dependence of the conductance in d-wave NIS tunnel junctions

    Full text link
    The ab-plane NIS-tunnelling conductance in d-wave superconductors shows a zero-bias conductance peak which is predicted to split in a magnetic field. In a pure d-wave superconductor the splitting is linear for fields small on the scale of the thermodynamic critical field. The field dependence is shown to be nonlinear, even at low fields, in the vicinity of a surface phase transition into a local time-reversal symmetry breaking state. The field evolution of the conductance is sensitive to temperature, doping, and the symmetry of the sub-dominant pairing channel.Comment: 4 pages, 4 figure

    Landau Ginzburg theory of the d-wave Josephson junction

    Full text link
    This letter discusses the Landau Ginzburg theory of a Josephson junction composed of on one side a pure d-wave superconductor oriented with the (110)(110) axis normal to the junction and on the other side either s-wave or d-wave oriented with (100)(100) normal to the junction. We use simple symmetry arguments to show that the Josephson current as a function of the phase must have the form j(ϕ)=j1sin(ϕ)+j2sin(2ϕ)j(\phi) = j_1 \sin(\phi) + j_2 \sin(2 \phi). In principle j1j_1 vanishes for a perfect junction of this type, but anisotropy effects, either due to a-b axis asymmetry or junction imperfections can easily cause j1/j2j_1 / j_2 to be quite large even in a high quality junction. If j1/j2j_1 / j_2 is sufficiently small and j2j_2 is negative local time reversal symmetry breaking will appear. Arbitrary values of the flux would then be pinned to corners between such junctions and occasionally on junction faces, which is consistent with experiments by Kirtley et al

    Phase Crystals

    Get PDF
    Superconductivity owes its properties to the phase of the electron pair condensate that breaks the U(1)U(1) symmetry. In the most traditional ground state, the phase is uniform and rigid. The normal state can be unstable towards special inhomogeneous superconducting states: the Abrikosov vortex state, and the Fulde-Ferrell-Larkin-Ovchinnikov state. Here we show that the phase-uniform superconducting state can go into a fundamentally different and more ordered non-uniform ground state, that we denote as a phase crystal. The new state breaks translational invariance through formation of a spatially periodic modulation of the phase, manifested by unusual superflow patterns and circulating currents, that also break time-reversal symmetry. We list the general conditions needed for realization of phase crystals. Using microscopic theory we then derive an analytic expression for the superfluid density tensor for the case of a non-uniform environment in a semi-infinite superconductor. We demonstrate how the surface quasiparticle states enter the superfluid density and identify phase crystallization as the main player in several previous numerical observations in unconventional superconductors, and predict existence of a similar phenomenon in superconductor-ferromagnetic structures. This analytic approach provides a new unifying aspect for the exploration of boundary-induced quasiparticles and collective excitations in superconductors. More generally, we trace the origin of phase crystallization to non-local properties of the gradient energy, which implies existence of similar pattern-forming instabilities in many other contexts.Comment: 8 pages, 4 figure

    Effects of quasiparticle tunneling in a circuit-QED realization of a strongly driven two-level system

    Full text link
    We experimentally and theoretically study the frequency shift of a driven cavity coupled to a superconducting charge qubit. In addition to previous studies, we here also consider drive strengths large enough to energetically allow for quasiparticle creation. Quasiparticle tunneling leads to the inclusion of more than two charge states in the dynamics. To explain the observed effects, we develop a master equation for the microwave dressed charge states, including quasiparticle tunneling. A bimodal behavior of the frequency shift as a function of gate voltage can be used for sensitive charge detection. However, at weak drives the charge sensitivity is significantly reduced by non-equilibrium quasiparticles, which induce transitions to a non-sensitive state. Unexpectedly, at high enough drives, quasiparticle tunneling enables a very fast relaxation channel to the sensitive state. In this regime, the charge sensitivity is thus robust against externally injected quasiparticles and the desired dynamics prevail over a broad range of temperatures. We find very good agreement between theory and experiment over a wide range of drive strengths and temperatures.Comment: 25 pages, 7 figure

    Andreev Bound States at the Interface of Antiferromagnets and d-wave Superconductors

    Full text link
    We set up a simple transfer matrix formalism to study the existence of bound states at interfaces and in junctions between antiferromagnets and d-wave superconductors. The well-studied zero energy mode at the {110} interface between an insulator and a d-wave superconductor is spin split when the insulator is an antiferromagnet. This has as a consequence that any competing interface induced superconducting order parameter that breaks the time reversal symmetry needs to exceed a critical value before a charge current is induced along the interface.Comment: 4 pages, 3 figure

    Spin-precession-assisted supercurrent in a superconducting quantum point contact coupled to a single-molecule magnet

    Get PDF
    The supercurrent of a quantum point contact coupled to a nanomagnet strongly depends on the dynamics of the nanomagnet's spin. We employ a fully microscopic model to calculate the transport properties of a junction coupled to a spin whose dynamics is modeled as Larmor precession brought about by an external magnetic field and find that the dynamics affects the charge and spin currents by inducing transitions between the continuum states below the superconducting gap edge and the Andreev levels. This redistribution of the quasiparticles leads to a non-equilibrium population of the Andreev levels and an enhancement of the supercurrent which is visible as a modified current-phase relation as well as a non-monotonous critical current as function of temperature. The non-monotonous behavior is accompanied by a corresponding change in spin-transfer torques acting on the precessing spin and leads to the possibility of using temperature as a means to tune the back-action on the spin.Comment: 11 pages, 5 figure

    Dynamic parity recovery in a strongly driven Cooper-pair box

    Get PDF
    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stuckelberg (LZS) interference structure of a longitudinally driven two-level system. For even stronger drives we observe a significant change in the LZS pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.Comment: 5 pages, 4 figure
    corecore