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We study the spectrum of fermion states localized within the vortex core of a weak-coupling p-wave
superfluid. The low energy spectrum consists of two anomalous branches that generate a large density of
states at the locations of the half cores of the vortex. Fermi liquid interactions significantly stretch the vortex
structure, which leads to a Lifshitz transition in the effective Fermi surface of the vortex core fermions. We
apply the results to the rotational dynamics of vortices in superfluid 3He-B and find an explanation for the
observed slow mode.
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The double-core vortex is an amazing structure because
it is the unique answer to a simple question: What is the
vortex structure of a weak-coupling p-wave-pairing super-
fluid? The ground state in this case is the Balian-Werthamer
(BW) state [1]. The lowest energy vortex has the double-
core structure, where the core is split into two “half cores”
as depicted in Figs. 1(a) and 1(b) [2–8]. This is not only of
theoretical interest since superfluid 3He is close to being
weak coupling, and its B phase was identified as the BW
state. Two vortex types have been found experimentally in
3He-B [9–12]. The vortex being stable in the major, low-
pressure part of the phase diagram was identified as the
double-core vortex. The vortex stable at higher pressures
was identified as the axially symmetric A-phase-core
vortex. Available experimental evidence is consistent with
the theoretical identification of the vortex structures. In
particular, the broken axial symmetry of the double-core
vortex was used to explain the peculiar dynamical proper-
ties that have been observed for the low pressure vortex
using the homogeneous precessing domain mode of NMR
[13,14]. A similar double-core vortex structure has been
suggested to appear in the spin-triplet heavy fermion
superconductor UPt3 [15].
One of the most interesting properties of quantized

vortices in superconductors and Fermi superfluids is the
presence of fermionic quasiparticles localized within the
vortex core at energies smaller than the bulk energy gap
[16,17]. Generally fermionic bound states determine both
the thermodynamic and dynamic properties of vortices at
low temperatures [18–22]. In the rotational dynamics of the
double-core vortex they are predicted to give rise to
resonance absorption at the frequency comparable with
the spacing of the localized energy eigenstates [23].
Recently, much attention has been focused on the topo-
logically protected zero energy vortex-core and surface
states in superfluid 3He [24–27]. Particularly motivating is
a predicted existence of self-conjugated Majorana states

localized on half-quantum vortices in p-wave superflu-
ids [28].
In this Letter we calculate the low-energy fermionic

excitation spectrum of the double-core vortex. We find that
the low-energy excitations mostly are localized in the two
half cores. This is visualized in Figs. 1(c) and 1(d), which
show the fermionic local density of states (LDOS) profiles
around the vortex core. We can interpret the two half cores
as potential wells for quasiparticles. The motion of the
excitations between the wells depends on the potential
barrier between them. We find that this barrier changes

FIG. 1 (color online). (a),(b) The double-core vortex structure
made visible by the pair density jΨj2 ¼ P

μ;ijAμ;ij2 plotted in the
x-y plane perpendicular to the vortex axis at temperature
(a) T=Tc ¼ 0.9 and (b) T=Tc ¼ 0.1. (c),(d) The normalized local
density of states profiles demonstrating the quasiparticle wave
function at the Fermi level ε ¼ 0, p̂z ¼ 0 at (c) T=Tc ¼ 0.9 and
(d) T=Tc ¼ 0.1. All plots correspond to pressure P ¼ 24 bar.
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essentially as the distance of the wells changes as a function
of pressure and temperature (see Fig. 1 to compare the
vortex structures at T=Tc ¼ 0.9 and T=Tc ¼ 0.1). This
implies a transition from excitations that circle both half
cores to separate excitations that circle only a single half
core. This transition can be seen as a Lifshitz-type
transition in the topology of the fermionic states bound
to the vortex core. We discuss how this could be observable
in the time scales of rotational dynamics. Comparing our
calculations with an earlier experiment reveals a serious
disagreement in the model used to interpret the experi-
mental data [14]. We construct a different model, which
also provides an explanation for the long time scale
observed in rotational dynamics [13,29,30].
The triplet pairing of fermions in orbital p-wave states is

described by the matrix

Δ
̬
ðr; p̂Þ ¼

X

α;i

AαiðrÞiσ
̬
ασ
̬
yp̂i; ð1Þ

where σ
̬
x;y;z are Pauli matrices, p is the momentum close to

the Fermi surface p ≈ pF ¼ ℏkF, and p̂ ¼ p=p. The gap
function Δ

̬
(1) is determined by the 3 × 3 order parameter

matrix with complex components Aαi. Here, α ¼ x; y; z and
i ¼ x; y; z are the spin and orbital indices, respectively.
In the weak coupling theory of a p-wave superfluid, the

stable state has the BW form [1]. In the BW state, the order
parameter far from the vortex axis is Aαi ¼ Δ0 expðiφÞRαi.
Here, φ is the azimuth with respect to the vortex axis, Rαi is
a constant rotation matrix, and Δ0 is the order parameter
amplitude. Near the vortex axis a more sophisticated
structure appears [2–8]. It is energetically favorable to
change the sign of the order parameter across the vortex
axis by spin rotation of the BW-state matrix Aαi by π [4].
This effectively results in splitting of a singly quantized
vortex to a pair of half-quantum vortices that are bound
together by a planar-phase domain wall. For illustration see
Figs. 1(a) and 1(b), which show the pair density jΨj2 ¼P

α;ijAαij2 in the x-y plane. The pair density has two
distinct minima, whence the name double-core vortex.
To determine the vortex structure we calculate self-

consistently the order parameter and the Fermi-liquid
self-energy [31]. The numerics is performed as described
in Ref. [6], i.e., using the explosion trick to solve the
Eilenberger transport equation. We extend the previous
work [6,7] to higher accuracy, lower temperatures, and
different values of the Fermi-liquid parameter Fs

1 corre-
sponding to different pressures. The parameter Fs

1 deter-
mines the feedback of the superfluid mass current on the
order parameter and can significantly change both the
vortex structure and the spectrum of bound fermions.
The distance a between the half cores is shown Fig. 2. Its

scale is R0 ¼ ð1þ Fs
1=3Þξ0, where ξ0 ¼ ℏvF=2πTc is the

coherence length and vF is the Fermi velocity. As Fs
1 in

liquid 3He ranges from 5.4 to 14.6 depending on pressure P

[32], the two length scales can differ essentially. Thus, at
large values of Fs

1, corresponding to high pressures, the
vortex size at a low temperature is much larger than the
coherence length. For example, a ¼ 46ξ0 in the case of
Fig. 1(b). Figure 2 also shows strong temperature and
pressure dependence. The distance of the half cores grows
almost threefold when the temperature decreases from
0.9Tc to 0.1Tc at 24 bar. Similarly, as a function of
pressure the distance a, measured in units of ξ0, grows
almost twofold when the pressure increases from 0 to 24
bar at a low temperature.
We calculate the excitation spectrum of the double-core

vortex using the self-consistent order parameter field. This
is done by solving the eigenvalue problem for the system of
Andreev equations, which are ordinary differential equa-
tions describing the propagation of a quasiparticle wave
function along classical trajectories.
The momentum p of a low energy excitation is close to

the Fermi surface, p ≈ pF. The classical trajectories are
straight lines parallel to p. In studying a vortex we fix the z
axis as the vortex axis, and we parametrize the momentum
direction p̂ ¼ ðp̂⊥ cos θp; p̂⊥ sin θp; p̂zÞ. The direction on
the trajectory is fixed by giving p̂z and θp. The location of
the trajectory is given by the impact parameter b, the
coordinate measuring the distance from the vortex axis. The
parametrization is visualized in Fig. 3(a). The impact
parameter is related to the projection of the angular
momentum μ on the vortex axis through the usual classical
mechanics formula μ ¼ p⊥b. The quasiclassical energy
spectrum is given by ε ¼ εiðp̂z; θp; bÞ, where the param-
eters p̂z; θp; b specify the classical trajectory and integer i
counts the eigenvalues of the Andreev equations on a given
trajectory [33]. Figure 3(b) shows a bunch of trajectories at
the Fermi level and p̂z ¼ 0. The concentration of the
trajectories at the two half cores results in the large
LDOS at the half cores. The concave triangular shape of
the caustic of the trajectories at the half cores is clearly
visible in the LDOS shown in Fig. 1(d). Also the classically
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FIG. 2 (color online). Distance a between the half cores in the
double-core vortex at different values of the Fermi liquid
parameter Fs

1. The locations of the half cores are determined
from zeros of the supercurrent density.
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nonallowed region around the vortex axis in Fig. 3(b) can
be recognized in Fig. 1(c) as a valley in the LDOS profile in
the region between the half cores.
Because of the lifted spin degeneracy, singly quantized

vortices in 3He-B have two anomalous branches of the
quasiparticle spectrum [34]. At low energy compared to the
bulk energy gap, jεj ≪ Δ0, they can be represented as

εiðp̂z; θp; bÞ ¼ −ωipFðb − biÞ; ð2Þ

where i ¼ 1, 2. Here, biðp̂z; θpÞ is the impact parameter
that corresponds to vanishing excitation energy, and
ωiðp̂z; θpÞ indicates the slope of the energy at b ¼ bi.
The new feature in a nonaxisymmetric vortex is that these
parameters depend on the trajectory direction θp in the
x-y plane.
Figure 3(c) shows the calculated quasiparticle energies

as a function of impact parameter b and different directions
of the trajectory θp. The curves cross the Fermi level at a
finite b in accordance with Eq. (2). These locations in the

energy spectrum b1;2ðθpÞ are shown by the black dots in
Fig. 3(c). The states at the Fermi level in the spectrum (2)
form a 2D effective Fermi surface b ¼ b1;2ðp̂z; θpÞ in the
3D space formed by the quasiclassical quantum numbers
(p̂z; θp; b) in the vortex core. Because of the two non-
degenerate branches (2), there are two sheets in the Fermi
surface. One more representation of this is given in
Fig. 3(d). It shows b1;2 as a function of θp. The curves
depend also on p̂z but that dependence is less important in
the following because p̂z is conserved. For comparison, the
trajectories passing precisely through the half cores at y ¼
�a=2 would correspond to curves bðθpÞ ¼ ∓ 1

2
a cos θp.

The topology of the effective Fermi surface is deter-
mined by the behavior of the zero energy lines b1;2ðθpÞ at
θp ¼ πðnþ 1=2Þ with n ¼ 1, 2. At these angles the
quasiparticle trajectories pass through both half cores. In
general there is overlap of the quasiparticle wave functions
localized at different half cores. This results in no sign
change of b1;2ðθbÞ. That is, there is anticrossing of the two
branches and a finite splitting 2δb ¼ jb1 − b2j > 0 at
θp ¼ π=2, as shown by the solid lines in Fig. 3(d).
Physically, this means that an excitation created at one
half core will jump periodically between the half cores.
The growing core separation (compared to ξ0) at low

temperatures and large pressures reduces the overlap of the
quasiparticle wave functions located at different half cores.
As a result the splitting 2δb becomes extremely small as
shown by the dashed lines in Fig. 3(d) for Fs

1 ¼ 12 and
T ¼ 0.1Tc. In this case Landau-Zener (LZ) tunneling
between the quasiclassical branches (2) becomes important.
The probability W of these transitions can be found
from the conventional approach [35,36] by taking θp
and the angular momentum μ ¼ p⊥b as the conjugate
variables. Near the anticrossing point at θp ¼ π=2 we

can approximate b1;2ðθpÞ ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δb2 þ ðaθ=2Þ2

p
, where

θ ¼ θp − π=2. The transition probability is given by
W ¼ exp½−2k⊥Im

R
iθ�
0 ðb1 − b2Þdθ�, where iθ� ¼ 2iδb=a

is the intersection point of the quasiclassical branches in
the complex plane. A simple calculation yields W ¼
exp½−2πp̂⊥ðδb=ΔbÞ2�, where Δb ¼ ffiffiffiffiffiffiffiffiffiffi

a=kF
p

has the physi-
cal meaning of the quantum mechanical uncertainty of the
impact parameter.
Once the transition probability becomes large, W ≈ 1,

the LZ tunneling changes the topology of the effective
Fermi surface so that the quasiparticles remain localized in
one or the other of the half cores. In Fig. 3(d) this means a
transition to the intersecting zero energy curves ~b1ð2ÞðθpÞ ¼
b1ð2ÞðθpÞ for −π=2 < θp < π=2 and ~b1ð2ÞðθpÞ ¼ b2ð1ÞðθpÞ
for π=2 < θp < 3π=2. The calculated LZ probability
WðT; P; p̂zÞ is shown in the Supplemental Material [37]
to demonstrate that the condition W ≈ 1 is realized in the
double-core vortex at large pressures and low temperatures.
The crossover from the split b1;2ðθpÞ to the intersecting
isoenergetic lines ~b1;2ðθpÞ is an analog of the Lifshitz
transition [39] changing the topology of the Fermi surface.

(a) (b)

(c) (d)

FIG. 3 (color online). (a) Schematic plot of a quasiclassical
trajectory in the x-y plane in the direction of ðcos θp; sin θpÞ
passing the vortex axis at distance b (impact parameter). A point
r ¼ ðx; yÞ on the trajectory is determined by the coordinate s.
(b) A bunch of quasiparticle trajectories (straight lines) at the
Fermi level ε ¼ 0 and p̂z ¼ 0 superimposed on the pair-density
contour plot at T=Tc ¼ 0.5 and Fs

1 ¼ 0. (c) Anomalous branches
of the quasiparticle spectrum ε ¼ ε1;2ðb; θpÞ at p̂z ¼ 0, Fs

1 ¼ 12,
and T ¼ 0.9Tc. (d) Two sheets of the effective Fermi surface
b ¼ b1;2ðθpÞ at p̂z ¼ 0, Fs

1 ¼ 12, T ¼ 0.9Tc (solid lines) and
T ¼ 0.1Tc (dashed lines).
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The transition leads to a formation of two spatially
separated low-energy fermionic states localized at the half
cores. Whether there are Majorana states precisely at the
Fermi level [28] or not [27] is beyond our quasiclassical
approach. The transition affects the rotational dynamics of
the double-core vortex. The bound fermions in the core
respond to oscillation of the core orientation. A friction
torque acting on a rotating vortex core can be expressed by
a friction coefficient f ¼ f1pFðkFξ0Þ2, where f1 ∼ 1 is
dimensionless and the factor pFðkFξ0Þ2 is determined by
the density of quasiparticles in the vortex core. The
expression for the friction torque [23] yields resonance
peaks in f located at angular frequencies ω ≈ nEm=ℏ,
where n is integer. Here, Em is the spacing of the quantized
energy levels obtained from the quasiclassical spectrum (2)
using the Bohr-Sommerfeld quantization rule for the
angular momentum [23], Em ¼ ℏhω−1

1 ðp̂z ¼ 0Þi−1, where
h� � �i denotes the average over θp. The scale of the minigap
is determined by ℏ=τn ¼ ð2πTcÞ2=vFpF, which is on the
order of the quasiparticle relaxation rate in the normal state.
The calculated values of the minigap are listed in Table I.
The amplitudes of the resonances are determined by the

Fourier amplitudes of the zero-energy curves shown in
Fig. 3, An ∼ j R dθpeinθpb1ðθpÞj. From the plots in Fig. 3(d)
one can see that at pressures below the Lifshitz transition
the largest components are those with double frequency
ℏω ¼ 2Em. At pressures above the transition the ampli-
tudes are determined by the harmonics of the intersecting
curves ~biðθpÞ, which have the strongest matrix element at
ℏω ¼ Em. The difference in the friction coefficient f1 in the
two cases is demonstrated in Fig. 4 for different values of
the quasiparticle relaxation time τ. In the following we
show that at least the low frequency limit of the curves in
Fig. 4 is experimentally accessible.
Kondo et al. [13,14] have studied a sample of rotating

3He-B using the homogeneously precessing domain. In this
mode the magnetization M is tipped by a large angle
(> 104°) from the field direction B. It was found that the
contribution of vortices to the relaxation changed on a few
minute time scale [13]. The interpretation was that the
double-core vortex gets twisted as its end points (at
z ¼ �L=2) are pinned but in the bulk the rotating mag-
netization exerts a torque on the core. A quantitative model
was constructed for the vortex core rotation angle ϕðt; zÞ as
a function of time t and z. The parameters of the model
were determined by fitting to the experiment [14]. These
include the friction parameter f, the dipole torque TD,
which drives the vortex in the presence of rotating

magnetization, and the rigidity K, which gives the energy
caused by twisting the core, Ftwist ¼ 1

2
Kð∂zϕÞ2.

By precise calculation of the vortex structure we can now
calculate the vortex parameters. We find a value of f that is
3 orders of magnitude larger than that fitted by Kondo et al.
[14]. Thus, a serious revision of the model has to be made.
The large value of f means that only a negligible fraction of
energy dissipation comes from vortex core rotation. Thus,
essentially all dissipation has to arise from normal-
superfluid disequilibrium [40], spin diffusion, and radiation
of spin waves. Without going into details, these can be
incorporated by allowing an elastic vortex structure, where
the rotation angle αðt; zÞ at a distance from the vortex axis
(where the dipole torque acts) can be different from the
vortex core angle ϕðt; zÞ. These are bound by elasticity
energy 1

2
TAðα − ϕÞ2, and both angles have their own

friction coefficients: f _ϕ ¼ −δF=δϕ, g _α ¼ −δF=δα. This
model results in the diffusion equation [37]

_ϕ ¼ K
f
∂2
zϕþ Pg

ωf
; ð3Þ

where Pg is the power absorption per vortex length. An
important virtue of this model is that based on our
calculations of f and K, Eq. (3) predicts a time scale
L2f=π2K of several minutes. Thus, Eq. (3) gives a simple
explanation for the observed slow mode [13,29,30], which
remained unexplained in previous models [14,30].
In summary, we have investigated the spectrum of bound

fermion states localized within the vortex core of a weak-
coupling p-wave superfluid. We predicted a Lifshitz
transition, which separates low-energy quasiparticle states
at the half cores and affects the rotational dynamics.
Applying our results to Ref. [14] explains the observed

TABLE I. Values of the minigap Em=h (kHz) at different
pressures and temperatures.

P ¼ 2 bar P ¼ 12 bar P ¼ 24 bar

T ¼ 0.05Tc 27 71 98
T ¼ 0.5Tc 22 65 106

(a) (b)

FIG. 4 (color online). Demonstration of the effect of the
Lifshitz transition on the rotational friction coefficient f1 plotted
as a function of frequency ω for (a) W ¼ 0 and (b) W ¼ 1. The
vortex structure and the excitation spectrum are calculated at
T ¼ 0.5Tc and (a) P ¼ 2 bar and (b) P ¼ 24 bar. The minigap
values are given in Table I. According to mutual friction
measurements [12] ℏ=Emτ ¼ 0.7 at P ¼ 24 bar but a wider
range is given to illustrate the influence of relaxation on the
shape of the absorption peak.
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long time scale and thus gives one more piece of evidence
of the double-core nature of the low pressure vortex
in 3He-B.
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