513 research outputs found

    Loop equations for the semiclassical 2-matrix model with hard edges

    Get PDF
    The 2-matrix models can be defined in a setting more general than polynomial potentials, namely, the semiclassical matrix model. In this case, the potentials are such that their derivatives are rational functions, and the integration paths for eigenvalues are arbitrary homology classes of paths for which the integral is convergent. This choice includes in particular the case where the integration path has fixed endpoints, called hard edges. The hard edges induce boundary contributions in the loop equations. The purpose of this article is to give the loop equations in that semicassical setting.Comment: Latex, 20 page

    Mixed correlation functions in the 2-matrix model, and the Bethe ansatz

    Full text link
    Using loop equation technics, we compute all mixed traces correlation functions of the 2-matrix model to large N leading order. The solution turns out to be a sort of Bethe Ansatz, i.e. all correlation functions can be decomposed on products of 2-point functions. We also find that, when the correlation functions are written collectively as a matrix, the loop equations are equivalent to commutation relations.Comment: 38 pages, LaTex, 24 figures. misprints corrected, references added, a technical part moved to appendi

    Mixed Correlation Functions of the Two-Matrix Model

    Full text link
    We compute the correlation functions mixing the powers of two non-commuting random matrices within the same trace. The angular part of the integration was partially known in the literature: we pursue the calculation and carry out the eigenvalue integration reducing the problem to the construction of the associated biorthogonal polynomials. The generating function of these correlations becomes then a determinant involving the recursion coefficients of the biorthogonal polynomials.Comment: 16 page

    Double scaling limits of random matrices and minimal (2m,1) models: the merging of two cuts in a degenerate case

    Get PDF
    In this article, we show that the double scaling limit correlation functions of a random matrix model when two cuts merge with degeneracy 2m2m (i.e. when yx2my\sim x^{2m} for arbitrary values of the integer mm) are the same as the determinantal formulae defined by conformal (2m,1)(2m,1) models. Our approach follows the one developed by Berg\`{e}re and Eynard in \cite{BergereEynard} and uses a Lax pair representation of the conformal (2m,1)(2m,1) models (giving Painlev\'e II integrable hierarchy) as suggested by Bleher and Eynard in \cite{BleherEynard}. In particular we define Baker-Akhiezer functions associated to the Lax pair to construct a kernel which is then used to compute determinantal formulae giving the correlation functions of the double scaling limit of a matrix model near the merging of two cuts.Comment: 37 pages, 4 figures. Presentation improved, typos corrected. Published in Journal Of Statistical Mechanic

    Enumeration of maps with self avoiding loops and the O(n) model on random lattices of all topologies

    Full text link
    We compute the generating functions of a O(n) model (loop gas model) on a random lattice of any topology. On the disc and the cylinder, they were already known, and here we compute all the other topologies. We find that the generating functions (and the correlation functions of the lattice) obey the topological recursion, as usual in matrix models, i.e they are given by the symplectic invariants of their spectral curve.Comment: pdflatex, 89 pages, 12 labelled figures (15 figures at all), minor correction

    Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach

    Get PDF
    We solve the loop equations of the β\beta-ensemble model analogously to the solution found for the Hermitian matrices β=1\beta=1. For \beta=1,thesolutionwasexpressedusingthealgebraicspectralcurveofequation, the solution was expressed using the algebraic spectral curve of equation y^2=U(x).Forarbitrary. For arbitrary \beta,thespectralcurveconvertsintoaSchro¨dingerequation, the spectral curve converts into a Schr\"odinger equation ((\hbar\partial)^2-U(x))\psi(x)=0with with \hbar\propto (\sqrt\beta-1/\sqrt\beta)/N.Thispaperissimilartothesisterpaper I,inparticular,allthemainingredientsspecificforthealgebraicsolutionoftheproblemremainthesame,butherewepresentthesecondapproachtofindingasolutionofloopequationsusingsectorwisedefinitionofresolvents.Beingtechnicallymoreinvolved,itallowsdefiningconsistentlytheBcyclestructureoftheobtainedquantumalgebraiccurve(aDmoduleoftheform. This paper is similar to the sister paper~I, in particular, all the main ingredients specific for the algebraic solution of the problem remain the same, but here we present the second approach to finding a solution of loop equations using sectorwise definition of resolvents. Being technically more involved, it allows defining consistently the B-cycle structure of the obtained quantum algebraic curve (a D-module of the form y^2-U(x),where, where [y,x]=\hbar)andtoconstructexplicitlythecorrelationfunctionsandthecorrespondingsymplecticinvariants) and to construct explicitly the correlation functions and the corresponding symplectic invariants F_h,orthetermsofthefreeenergy,in1/N2, or the terms of the free energy, in 1/N^2-expansion at arbitrary \hbar. The set of "flat" coordinates comprises the potential times tkt_k and the occupation numbers \widetilde{\epsilon}_\alpha.WedefineandinvestigatethepropertiesoftheAandBcycles,formsof1st,2ndand3rdkind,andtheRiemannbilinearidentities.Weusetheseidentitiestofindexplicitlythesingularpartof. We define and investigate the properties of the A- and B-cycles, forms of 1st, 2nd and 3rd kind, and the Riemann bilinear identities. We use these identities to find explicitly the singular part of \mathcal F_0thatdependsexclusivelyon that depends exclusively on \widetilde{\epsilon}_\alpha$.Comment: 58 pages, 7 figure

    Matrix eigenvalue model: Feynman graph technique for all genera

    Get PDF
    We present the diagrammatic technique for calculating the free energy of the matrix eigenvalue model (the model with arbitrary power β\beta by the Vandermonde determinant) to all orders of 1/N expansion in the case where the limiting eigenvalue distribution spans arbitrary (but fixed) number of disjoint intervals (curves).Comment: Latex, 27 page

    Holomorphic anomaly and matrix models

    Get PDF
    The genus g free energies of matrix models can be promoted to modular invariant, non-holomorphic amplitudes which only depend on the geometry of the classical spectral curve. We show that these non-holomorphic amplitudes satisfy the holomorphic anomaly equations of Bershadsky, Cecotti, Ooguri and Vafa. We derive as well holomorphic anomaly equations for the open string sector. These results provide evidence at all genera for the Dijkgraaf--Vafa conjecture relating matrix models to type B topological strings on certain local Calabi--Yau threefolds.Comment: 23 pages, LaTex, 3 figure

    Duality, Biorthogonal Polynomials and Multi-Matrix Models

    Full text link
    The statistical distribution of eigenvalues of pairs of coupled random matrices can be expressed in terms of integral kernels having a generalized Christoffel--Darboux form constructed from sequences of biorthogonal polynomials. For measures involving exponentials of a pair of polynomials V_1, V_2 in two different variables, these kernels may be expressed in terms of finite dimensional ``windows'' spanned by finite subsequences having length equal to the degree of one or the other of the polynomials V_1, V_2. The vectors formed by such subsequences satisfy "dual pairs" of first order systems of linear differential equations with polynomial coefficients, having rank equal to one of the degrees of V_1 or V_2 and degree equal to the other. They also satisfy recursion relations connecting the consecutive windows, and deformation equations, determining how they change under variations in the coefficients of the polynomials V_1 and V_2. Viewed as overdetermined systems of linear difference-differential-deformation equations, these are shown to be compatible, and hence to admit simultaneous fundamental systems of solutions. The main result is the demonstration of a spectral duality property; namely, that the spectral curves defined by the characteristic equations of the pair of matrices defining the dual differential systems are equal upon interchange of eigenvalue and polynomial parameters.Comment: Latex, 44 pages, 1 tabl

    Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem

    Full text link
    We consider biorthogonal polynomials that arise in the study of a generalization of two--matrix Hermitian models with two polynomial potentials V_1(x), V_2(y) of any degree, with arbitrary complex coefficients. Finite consecutive subsequences of biorthogonal polynomials (`windows'), of lengths equal to the degrees of the potentials, satisfy systems of ODE's with polynomial coefficients as well as PDE's (deformation equations) with respect to the coefficients of the potentials and recursion relations connecting consecutive windows. A compatible sequence of fundamental systems of solutions is constructed for these equations. The (Stokes) sectorial asymptotics of these fundamental systems are derived through saddle-point integration and the Riemann-Hilbert problem characterizing the differential equations is deduced.Comment: v1:41 pages, 5 figures, 1 table. v2:Typos and other errors corrected. v3: Some conceptual changes, added appendix and two figures v4: Minor typographical changes, improved figures. v5: updated version (submitted) 49 pages, 7 figures, 1 tabl
    corecore