6,160 research outputs found
Generalized Galileon cosmology
We study the cosmology of a generalized Galileon field with five
covariant Lagrangians in which is replaced by general scalar functions
(i=1,...,5). For these theories, the equations of motion remain
at second-order in time derivatives. We restrict the functional forms of
from the demand to obtain de Sitter solutions responsible for
dark energy. There are two possible choices for power-law functions
, depending on whether the coupling with the Ricci
scalar is independent of or depends on . The former
corresponds to the covariant Galileon theory that respects the Galilean
symmetry in the Minkowski space-time. For generalized Galileon theories we
derive the conditions for the avoidance of ghosts and Laplacian instabilities
associated with scalar and tensor perturbations as well as the condition for
the stability of de Sitter solutions. We also carry out detailed analytic and
numerical study for the cosmological dynamics in those theories.Comment: 24 pages, 10 figures, version to appear in Physical Review
Testing general relativity by micro-arcsecond global astrometry
The global astrometric observations of a GAIA-like satellite were modeled
within the PPN formulation of Post-Newtonian gravitation. An extensive
experimental campaign based on realistic end-to-end simulations was conducted
to establish the sensitivity of global astrometry to the PPN parameter \gamma,
which measures the amount of space curvature produced by unit rest mass. The
results show that, with just a few thousands of relatively bright,
photometrically stable, and astrometrically well behaved single stars, among
the ~10^9 objects that will be observed by GAIA, \gamma can be estimated after
1 year of continuous observations with an accuracy of ~10^{-5} at the 3\sigma
level. Extrapolation to the full 5-year mission of these results based on the
scaling properties of the adjustment procedure utilized suggests that the
accuracy of \simeq 2x10^{-7}, at the same 3\sigma level, can be reached with
\~10^6 single stars, again chosen as the most astrometrically stable among the
millions available in the magnitude range V=12-13. These accuracies compare
quite favorably with recent findings of scalar-tensor cosmological models,
which predict for \gamma a present-time deviation, |1-\gamma|, from the General
Relativity value between 10^{-5} and 10^{-7}.Comment: 7 pages, 2 figures, to be published in A&
Tracing a relativistic Milky Way within the RAMOD measurement protocol
Advancement in astronomical observations and technical instrumentation
implies taking into account the general relativistic effects due the
gravitational fields encountered by the light while propagating from the star
to the observer. Therefore, data exploitation for Gaia-like space astrometric
mission (ESA, launch 2013) requires a fully relativistic interpretation of the
inverse ray-tracing problem, namely the development of a highly accurate
astrometric models in accordance with the geometrical environment affecting
light propagation itself and the precepts of the theory of measurement. This
could open a new rendition of the stellar distances and proper motions, or even
an alternative detection perspective of many subtle relativistic effects
suffered by light while it is propagating and subsequently recorded in the
physical measurements.Comment: Proceeding for "Relativity and Gravitation, 100 Years after Einstein
in Prague" to be published by Edition Open Access, revised versio
A general relativistic model for the light propagation in the gravitational field of the Solar System: the dynamical case
Modern astrometry is based on angular measurements at the micro-arcsecond
level. At this accuracy a fully general relativistic treatment of the data
reduction is required. This paper concludes a series of articles dedicated to
the problem of relativistic light propagation, presenting the final
microarcsecond version of a relativistic astrometric model which enable us to
trace back the light path to its emitting source throughout the non-stationary
gravity field of the moving bodies in the Solar System. The previous model is
used as test-bed for numerical comparisons to the present one. Here we also
test different versions of the computer code implementing the model at
different levels of complexity to start exploring the best trade-off between
numerical efficiency and the micro-arcsecond accuracy needed to be reached.Comment: 40 pages, 5 figures. Accepted for publication on The Astrophysical
Journal. Manuscript prepared with AASLaTeX macros v.5.
Enhancing immunity by engineering DAMPs
da inserire
Five-Dimensional f(R) Braneworld Models
After incorporating the f(R) gravity into the general braneworld sum rules
scope, it is shown that some particular class of warped five dimensional
nonlinear braneworld models, which may be interesting for the hierarchy problem
solution, still require a negative tension brane. For other classes of warp
factors (suitable and not suitable for approaching the hierarchy problem) it is
not necessary any negative brane tension in the compactification scheme. In
this vein, it is argued that in the bulk f(R) gravity context, some types of
warp factors may be useful for approaching the hierarchy problem and for
evading the necessity of a negative brane tension in the compactification
scheme.Comment: 10 pages, references updated, small modifications. Accepted for
publication in Phys. Rev.
The post-Newtonian limit in C-theories of gravitation
C-theory provides a unified framework to study metric, metric-affine and more
general theories of gravity. In the vacuum weak-field limit of these theories,
the parameterized post-Newtonian (PPN) parameters and can
differ from their general relativistic values. However, there are several
classes of models featuring long-distance modifications of gravity but
nevertheless passing the Solar system tests. Here it is shown how to compute
the PPN parameters in C-theories and also in nonminimally coupled curvature
theories, correcting previous results in the literature for the latter.Comment: 5 pages, no figures; To appear in PRD as a rapid communicatio
A note on the factorization conjecture
We give partial results on the factorization conjecture on codes proposed by
Schutzenberger. We consider finite maximal codes C over the alphabet A = {a, b}
with C \cap a^* = a^p, for a prime number p. Let P, S in Z , with S = S_0 +
S_1, supp(S_0) \subset a^* and supp(S_1) \subset a^*b supp(S_0). We prove that
if (P,S) is a factorization for C then (P,S) is positive, that is P,S have
coefficients 0,1, and we characterize the structure of these codes. As a
consequence, we prove that if C is a finite maximal code such that each word in
C has at most 4 occurrences of b's and a^p is in C, then each factorization for
C is a positive factorization. We also discuss the structure of these codes.
The obtained results show once again relations between (positive)
factorizations and factorizations of cyclic groups
Cosmological dynamics of fourth order gravity with a Gauss-Bonnet term
We consider cosmological dynamics in fourth order gravity with both
and correction to the Einstein gravity ( is
the Gauss-Bonnet term). The particular case for which both terms are equally
important on power-law solutions is described. These solutions and their
stability are studied using the dynamical system approach. We also discuss
condition of existence and stability of de Sitter solution in a more general
situation of power-law and .Comment: published version, references update
- …