90,969 research outputs found
Single vortex fluctuations in a superconducting chip as generating dephasing and spin flips in cold atom traps
We study trapping of a cold atom by a single vortex line in an extreme type
II superconducting chip, allowing for pinning and friction. We evaluate the
atom's spin flip rate and its dephasing due to the vortex fluctuations in
equilibrium and find that they decay rapidly when the distance to the vortex
exceeds the magnetic penetration length. We find that there are special spin
orientations, depending on the spin location relative to the vortex, at which
spin dephasing is considerably reduced while perpendicular directions have a
reduced spin flip rate. We also show that the vortex must be perpendicular to
the surface for a general shape vortex.Comment: 6 pages, 4 figure
Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain
The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition
Direct frequency comb laser cooling and trapping
Continuous wave (CW) lasers are the enabling technology for producing
ultracold atoms and molecules through laser cooling and trapping. The resulting
pristine samples of slow moving particles are the de facto starting point for
both fundamental and applied science when a highly-controlled quantum system is
required. Laser cooled atoms have recently led to major advances in quantum
information, the search to understand dark energy, quantum chemistry, and
quantum sensors. However, CW laser technology currently limits laser cooling
and trapping to special types of elements that do not include highly abundant
and chemically relevant atoms such as hydrogen, carbon, oxygen, and nitrogen.
Here, we demonstrate that Doppler cooling and trapping by optical frequency
combs may provide a route to trapped, ultracold atoms whose spectra are not
amenable to CW lasers. We laser cool a gas of atoms by driving a two-photon
transition with an optical frequency comb, an efficient process to which every
comb tooth coherently contributes. We extend this technique to create a
magneto-optical trap (MOT), an electromagnetic beaker for accumulating the
laser-cooled atoms for further study. Our results suggest that the efficient
frequency conversion offered by optical frequency combs could provide a key
ingredient for producing trapped, ultracold samples of nature's most abundant
building blocks, as well as antihydrogen. As such, the techniques demonstrated
here may enable advances in fields as disparate as molecular biology and the
search for physics beyond the standard model.Comment: 10 pages, 5 figure
Teleporting bipartite entanglement using maximally entangled mixed channels
The ability to teleport entanglement through maximally entangled mixed states
as defined by concurrence and linear entropy is studied. We show how the
teleported entanglement depends on the quality of the quantum channel used, as
defined through its entanglement and mixedness, as well as the form of the
target state to be teleported. We present new results based on the fidelity of
the teleported state as well as an experimental set-up that is immediately
implementable with currently available technology.Comment: 8 pages, 7 figures, RevTeX4, Accepted for publication in the IJQI
special issue on Distributed Quantum Information Processin
An NPZ Model with State-Dependent Delay due to Size-Structure in Juvenile Zooplankton
The study of planktonic ecosystems is important as they make up the bottom
trophic levels of aquatic food webs. We study a closed
Nutrient-Phytoplankton-Zooplankton (NPZ) model that includes size structure in
the juvenile zooplankton. The closed nature of the system allows the
formulation of a conservation law of biomass that governs the system. The model
consists of a system of nonlinear ordinary differential equation coupled to a
partial differential equation. We are able to transform this system into a
system of delay differential equations where the delay is of threshold type and
is state-dependent. The system of delay differential equations can be further
transformed into one with fixed delay. Using the different forms of the model
we perform a qualitative analysis of the solutions, which includes studying
existence and uniqueness, positivity and boundedness, local and global
stability, and conditions for extinction. Key parameters that are explored are
the total biomass in the system and the maturity level at which the juvenile
zooplankton reach maturity. Numerical simulations are also performed to verify
our analytical results
Structural change in multipartite entanglement sharing: a random matrix approach
We study the typical entanglement properties of a system comprising two
independent qubit environments interacting via a shuttling ancilla. The initial
preparation of the environments is modeled using random-matrix techniques. The
entanglement measure used in our study is then averaged over many histories of
randomly prepared environmental states. Under a Heisenberg interaction model,
the average entanglement between the ancilla and one of the environments
remains constant, regardless of the preparation of the latter and the details
of the interaction. We also show that, upon suitable kinematic and dynamical
changes in the ancilla-environment subsystems, the entanglement-sharing
structure undergoes abrupt modifications associated with a change in the
multipartite entanglement class of the overall system's state. These results
are invariant with respect to the randomized initial state of the environments.Comment: 10 pages, RevTeX4 (Minor typo's corrected. Closer to published
version
Activities of the RTG Radiation Test Laboratory Progress report, 1 Jul. - 31 Dec. 1969
Safety, gamma ray spectrum, and data analysis of SNAP fuel capsule
Time- and frequency-domain polariton interference
We present experimental observations of interference between an atomic spin
coherence and an optical field in a {\Lambda}-type gradient echo memory. The
interference is mediated by a strong classical field that couples a weak probe
field to the atomic coherence through a resonant Raman transition. Interference
can be observed between a prepared spin coherence and another propagating
optical field, or between multiple {\Lambda} transitions driving a single spin
coherence. In principle, the interference in each scheme can yield a near unity
visibility.Comment: 11 pages, 5 figure
Sudden Expansion of a One-Dimensional Bose Gas from Power-Law Traps
We analyze free expansion of a trapped one-dimensional Bose gas after a
sudden release from the confining trap potential. By using the stationary phase
and local density approximations, we show that the long-time asymptotic density
profile and the momentum distribution of the gas are determined by the initial
distribution of Bethe rapidities (quasimomenta) and hence can be obtained from
the solutions to the Lieb-Liniger equations in the thermodynamic limit. For
expansion from a harmonic trap, and in the limits of very weak and very strong
interactions, we recover the self-similar scaling solutions known from the
hydrodynamic approach. For all other power-law traps and arbitrary interaction
strengths, the expansion is not self-similar and shows strong dependence of the
density profile evolution on the trap anharmonicity. We also characterize
dynamical fermionization of the expanding cloud in terms of correlation
functions describing phase and density fluctuations.Comment: Final published version with modified title and a couple of other
minor changes. 5 pages, 2 figures, and Supplemental Materia
- …