57 research outputs found

    Gremlin is a novel agonist of the major pro-angiogenic receptor VEGFR2

    Get PDF
    The bone morphogenic protein antagonist gremlin is expressed during embryonic development and under different pathologic conditions, including cancer. Gremlin is a proangiogenic protein belonging to the cystine-knot superfamily that includes transforming growth factor-β proteins and the angiogenic vascular endothelial growth factors (VEGFs). Here, we demonstrate that gremlin binds VEGF receptor-2 (VEGFR2), the main transducer of VEGF-mediated angiogenic signals, in a bone morphogenic protein-independent manner. Similar to VEGF-A, gremlin activates VEGFR2 in endothelial cells, leading to VEGFR2-dependent angiogenic responses in vitro and in vivo. Gremlin thus represents a novel proangiogenic VEGFR2 agonist distinct from the VEGF family ligands with implications in vascular development, angiogenesis-dependent diseases, and tumor neovascularization

    Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1.

    Get PDF
    During angiogenesis, a combined action between newly secreted extracellular matrix proteins and the repertoire of integrins expressed by endothelial cells contributes in the regulation of their biological functions. Extracellular matrix-engaged integrins influence tyrosine kinase receptors, thus promoting a regulatory cross-talk between adhesive and soluble stimuli. For instance, vitronectin has been reported to positively regulate VEGFR-2. Here, we show that collagen I downregulates VEGF-A-mediated VEGFR-2 activation. This activity requires the tyrosine phosphatase SHP2, which is recruited to the activated VEGFR-2 when cells are plated on collagen I, but not on vitronectin. Constitutive expression of SHP2(C459S) mutant inhibits the negative role of collagen I on VEGFR-2 phosphorylation. VEGFR-2 undergoes internalisation, which is associated with dynamin II phosphorylation. Expression of SHP2(C459S) impairs receptor internalisation suggesting that SHP2-dependent dephosphorylation regulates this process. These findings demonstrate that collagen I in provisional extracellular matrix surrounding nascent capillaries triggers a signaling pathway that negatively regulates angiogenesis

    NETTAB 2012 on “Integrated Bio-Search”

    Get PDF
    The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement

    RANK-Dependent Autosomal Recessive Osteopetrosis: Characterization of Five New Cases With Novel Mutations

    Get PDF
    Autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder attributed to reduced bone resorption by osteoclasts. Most human AROs are classified as osteoclast rich, but recently two subsets of osteoclast-poor ARO have been recognized as caused by defects in either TNFSF11 or TNFRSF11A genes, coding the RANKL and RANK proteins, respectively. The RANKL/RANK axis drives osteoclast differentiation and also plays a role in the immune system. In fact, we have recently reported that mutations in the TNFRSF11A gene lead to osteoclast-poor osteopetrosis associated with hypogammaglobulinemia. Here we present the characterization of five additional unpublished patients from four unrelated families in which we found five novel mutations in the TNFRSF11A gene, including two missense and two nonsense mutations and a single-nucleotide insertion. Immunological investigation in three of them showed that the previously described defect in the B cell compartment was present only in some patients and that its severity seemed to increase with age and the progression of the disease. HSCT performed in all five patients almost completely cured the disease even when carried out in late infancy. Hypercalcemia was the most important posttransplant complication. Overall, our results further underline the heterogeneity of human ARO also deriving from the interplay between bone and the immune system, and highlight the prognostic and therapeutic implications of the molecular diagnosis. © 2012 American Society for Bone and Mineral Researc

    Protein domain-based approaches for the identification and prioritization of therapeutically actionable cancer variants

    Get PDF
    The tremendous number of cancer variants that can be detected by NGS analyses has required the development of computational approaches to prioritize mutations on the basis of their biological and clinical significance. Standard strategies take a gene-centric approach to the problem, allowing exclusively the identification of highly frequent variants. On the contrary, protein domain (PD)-based approaches allow to identify functionally relevant low frequency variants by searching for mutations that recur on analogous residues across homologous proteins (i.e. containing the same PD). Such approaches enable to transfer information about the effects and druggability from one known mutation to unknown ones. Here we describe how PD-based strategies work, and discuss how they could be exploited for mutation prioritization. The principle that mutations clustered on specific residues of PDs have the same functional consequences and are therapeutically actionable in a similar manner could help the choice of patient-specific targeted drugs, eventually improving the management of cancer patients

    A novel variant of VEGFR2 identified by a pan-cancer screening of recurrent somatic mutations in the catalytic domain of tyrosine kinase receptors enhances tumor growth and metastasis

    Get PDF
    In cancer genomics, recurrence of mutations in gene families that share homologous domains has recently emerged as a reliable indicator of functional impact and can be exploited to reveal the pro-oncogenic effect of previously uncharacterized variants. Pan-cancer analyses of mutation hotspots in the catalytic domain of a subset of tyrosine kinase receptors revealed that two infrequent mutations of VEGFR2 (R1051Q and D1052N) recur in analogous proteins and correlate with reduced patient survival. Functional validation showed that both R1051Q and D1052N mutations increase the enzymatic activity of VEGFR2. The expression of VEGFR2R1051Q potentiates the PI3K/Akt signaling axis in cancer cells, increasing their tumorigenic potential in vitro and in vivo. In addition, it confers to cancer cells an increased sensitivity to the VEGFR2-targeted tyrosine kinase inhibitor Linifanib. In the context of an efficacious application of anti-cancer targeted therapies, these findings indicate that the screening for uncharacterized mutations, like VEGFR2R1051Q, may help to predict patient prognosis and drug response, with significant clinical implications

    Expression of activated VEGFR2 by R1051Q mutation alters the energy metabolism of Sk-Mel-31 melanoma cells by increasing glutamine dependence

    Get PDF
    Vascular endothelial growth factor receptor 2 (VEGFR2) activating mutations are emerging as important oncogenic driver events. Understanding the biological implications of such mutations may help to pinpoint novel therapeutic targets. Here we show that activated VEGFR2 via the pro-oncogenic R1051Q mutation induces relevant metabolic changes in melanoma cells. The expression of VEGFR2R1051Q leads to higher energy metabolism and ATP production compared to control cells expressing VEGFR2WT. Furthermore, activated VEGFR2R1051Q augments the dependence on glutamine (Gln) of melanoma cells, thus increasing Gln uptake and their sensitivity to Gln deprivation and to inhibitors of glutaminase, the enzyme initiating Gln metabolism by cells. Overall, these results highlight Gln addiction as a metabolic vulnerability of tumors harboring the activating VEGFR2R1051Q mutation and suggest novel therapeutic approaches for those patients harboring activating mutations of VEGFR2

    The chemokine system in cancer biology and therapy

    No full text
    Chemokines are a key component of cancer-related inflammation. Chemokines and chemokine receptors are downstream of genetic events that cause neoplastic transformation and are components of chronic inflammatory conditions, which predispose to cancer. Components of the chemokine system affect in a cell autonomous or non-autonomous way multiple pathways of tumor progression, including: leukocyte recruitment and function; cellular senescence; tumor cell proliferation and survival; invasion and metastasis. Available information in preclinical and clinical settings suggests that the chemokine system represents a valuable target for the development of innovative therapeutic strategies
    • …
    corecore