53 research outputs found
Fetal and Neonatal Nicotine Exposure in Wistar Rats Causes Progressive Pancreatic Mitochondrial Damage and Beta Cell Dysfunction
Nicotine replacement therapy (NRT) is currently recommended as a safe smoking cessation aid for pregnant women. However, fetal and neonatal nicotine exposure in rats causes mitochondrial-mediated beta cell apoptosis at weaning, and adult-onset dysglycemia, which we hypothesize is related to progressive mitochondrial dysfunction in the pancreas. Therefore in this study we examined the effect of fetal and neonatal exposure to nicotine on pancreatic mitochondrial structure and function during postnatal development. Female Wistar rats were given saline (vehicle control) or nicotine bitartrate (1 mg/kg/d) via subcutaneous injection for 2 weeks prior to mating until weaning. At 3–4, 15 and 26 weeks of age, oral glucose tolerance tests were performed, and pancreas tissue was collected for electron microscopy, enzyme activity assays and islet isolation. Following nicotine exposure mitochondrial structural abnormalities were observed beginning at 3 weeks and worsened with advancing age. Importantly the appearance of these structural defects in nicotine-exposed animals preceded the onset of glucose intolerance. Nicotine exposure also resulted in significantly reduced pancreatic respiratory chain enzyme activity, degranulation of beta cells, elevated islet oxidative stress and impaired glucose-stimulated insulin secretion compared to saline controls at 26 weeks of age. Taken together, these data suggest that maternal nicotine use during pregnancy results in postnatal mitochondrial dysfunction that may explain, in part, the dysglycemia observed in the offspring from this animal model. These results clearly indicate that further investigation into the safety of NRT use during pregnancy is warranted
Physical activity as an aid to smoking cessation during pregnancy (LEAP) trial: study protocol for a randomized controlled trial
Background: Many women try to stop smoking in pregnancy but fail. One difficulty is that there is insufficient evidence that medications for smoking cessation are effective and safe in pregnancy and thus many women prefer to avoid these. Physical activity (PA) interventions may assist cessation; however, trials examining these interventions have been too small to detect or exclude plausible beneficial effects. The London Exercise And Pregnant smokers (LEAP) trial is investigating whether a PA intervention is effective and cost-effective when used for smoking cessation by pregnant women, and will be the largest study of its kind to date.
Methods/design: The LEAP study is a pragmatic, multi-center, two-arm, randomized, controlled trial that will target pregnant women who smoke at least one cigarette a day (and at least five cigarettes a day before pregnancy), and are between 10 and 24 weeks pregnant. Eligible patients are individually randomized to either usual care (that is, behavioral support for smoking cessation) or usual care plus a intervention (entailing supervised exercise on a treadmill plus PA consultations). The primary outcome of the trial is self-reported and biochemically validated continuous abstinence from smoking between a specified quit date and the end of pregnancy. The secondary outcomes, measured at 1 and 4 weeks after the quit date, and at the end of pregnancy and 6 months after childbirth, are PA levels, depression, self-confidence, and cigarette withdrawal symptoms. Smoking status will also be self-reported at 6 months after childbirth. In addition, perinatal measures will be collected, including antenatal complications, duration of labor, mode of delivery, and birth and placental weight. Outcomes will be analyzed on an intention-to-treat basis, and logistic regression models used to compare treatment effects on the primary outcome.
Discussion: This trial will assess whether a PA intervention is effective when used for smoking cessation during pregnancy
Structural Modifications of the Brain in Acclimatization to High-Altitude
Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA
Cardiovascular and metabolic influences of fetal smoke exposure
Many epidemiological studies showed associations of low birth weight with cardiovascular disease, type 2 diabetes and obesity. The associations seem to be consistent and stronger among subjects with a postnatal catch up growth. It has been suggested that developmental changes in response to adverse fetal exposures might lead to changes in the fetal anatomy and physiology. These adaptations may be beneficial for short term, but may lead to common diseases in adulthood. Maternal smoking during pregnancy is one of the most important adverse fetal exposures in Western countries, and is known to be associated with a 150–200 g lower birth weight. An accumulating body of evidence suggests that maternal smoking during pregnancy might be involved in pathways leading to both low birth weight and common diseases, including cardiovascular disease, type 2 diabetes and obesity, in adulthood. In this review, we discuss epidemiological studies focused on the associations of maternal smoking with fetal growth and development and cardiovascular and metabolic disease in later life. We also discuss potential biological mechanisms, and challenges for future epidemiological studies
- …