2,125 research outputs found

    Adaptive Hexapod Simulator Motion Based on Aircraft Stability

    Get PDF
    This paper determined the feasibility of an adaptive hexapod simulator motion algorithm based on aircraft roll stability. An experiment was conducted that used a transport aircraft model in the Vertical Motion Simulator at NASA Ames Research Center. Eighteen general aviation pilots flew a heading-capture task and a stall task consecutively under four motion configurations: baseline hexapod, adaptive hexapod, optimized hexapod, and full motion. The adaptive motion was more similar to the baseline hexapod motion in the heading-capture task when the aircraft was more stable, and more similar to the optimized hexapod motion in the stall task when the aircraft was more unstable. Pilot motion ratings and task performance in the heading-capture task under the adaptive hexapod motion were more similar to baseline hexapod motion compared to optimized hexapod motion. However, motion ratings and task performance in the stall task under the adaptive motion were not significantly more similar to the optimized hexapod motion compared to baseline hexapod motion. Motion ratings and overall task performance under optimized hexapod motion as opposed to baseline hexapod motion were always more similar to the full motion condition. This paper showed that adaptive motion based on aircraft stability is feasible and can be implemented in a straightforward way. More research is required to test the adaptive motion algorithm in different tasks

    Low-energy excitations in the magnetized state of the bond-alternating quantum S=1 chain system NTENP

    Full text link
    High intensity inelastic neutron scattering experiments on the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9D24N4)(NO2)ClO4 (NTENP) are performed in magnetic fields of up to 14.8~T. Excitation in the high field magnetized quantum spin solid (ordered) phase are investigated. In addition to the previously observed coherent long-lived gap excitation [M. Hagiwara et al., Phys. Rev. Lett 94, 177202 (2005)], a broad continuum is detected at lower energies. This observation is consistent with recent numerical studies, and helps explain the suppression of the lowest-energy gap mode in the magnetized state of NTENP. Yet another new feature of the excitation spectrum is found at slightly higher energies, and appears to be some kind of multi-magnon state.Comment: 5 pages, 4 fugure

    Coulomb gauge confinement in the heavy quark limit

    Full text link
    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.Comment: 22 pages, 6 figure

    THAWS: automated wireless sensor network development and deployment

    Get PDF
    This research focuses on the design and implementation of a tool to speed-up the development and deployment of heterogeneous wireless sensor networks. The THAWS (Tyndall Heterogeneous Automated Wireless Sensors) tool can be used to quickly create and configure application-specific sensor networks. THAWS presents the user with a choice of options, in order to characterise the desired functionality of the network. With this information, THAWS generates the necessary code from pre-written templates and well-tested, optimized software modules. This is then automatically compiled to form binary files for each node in the network. Wireless programming of the network completes the task of targeting the wireless network towards a specific sensing application. THAWS is an adaptable tool that works with both homogeneous and heterogeneous networks built from wireless sensor nodes that have been developed in the Tyndall National Institute

    Effects of Retinal Eccentricity on Human Manual Control

    Get PDF
    This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall
    corecore