499 research outputs found

    Multicomponent diffusion and energy characteristics of partially ionized plasma in the ionosphere of a planet

    Get PDF
    The problem of energy and multicomponent ambipolar diffusion of plasma in the lower ionosphere of a planet with a weak magnetic field is considered

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    Josephson effect in a weak link between borocarbides

    Get PDF
    A stationary Josephson effect is analyzed theoretically for a weak link between borocarbide superconductors. It is shown that different models of the order parameter result in qualitatively different current-phase relations

    Quantum interference effects in a system of two tunnel point-contacts in the presence of single scatterer: simulation of a double-tip STM experiment

    Get PDF
    The conductance of systems containing two tunnel point-contacts and a single subsurface scatterer is investigated theoretically. The problem is solved in the approximation of s-wave scattering giving analytical expressions for the wave functions and for the conductance of the system. Conductance oscillations resulting from the interference of electron waves passing through different contacts and their interference with the waves scattered by the defect are analyzed. The prospect for determining the depth of the impurity below the metal surface by using the dependence of the conductance as a function of the distance between the contacts is discussed. It is shown that the application of an external magnetic field results in Aharonov-Bohm type oscillations in the conductance, the period of which allows detection of the depth of the defect in a double tip STM experiment.Comment: 11 pages, 4 figures, to be published in Fiz. Nizk. Temp. (Low Temp. Phys.), V.37, No.1 (2011) corrected figure

    Magneto-quantum oscillations of the conductance of a tunnel point-contact in the presence of a single defect

    Get PDF
    The influence of a quantizing magnetic field HH to the conductance of a tunnel point contact in the presence of the single defect has been considered. We demonstrate that the conductance exhibits specific magneto-quantum oscillations, the amplitude and period of which depend on the distance between the contact and the defect. We show that a non-monotonic dependence of the point-contact conductance results from a superposition of two types of oscillations: A short period oscillation arising from electron focusing by the field HH and a long period oscillation of Aharonov-Bohm-type originated from the magnetic flux passing through the closed trajectories of electrons moving from the contact to the defect and returning back to the contact.Comment: 13 pages, 3 figure

    Giant oscillations of the current in a dirty 2D electron system flowing perpendicular to a lateral barrier under magnetic field

    Get PDF
    The charge transport in a dirty 2-dimensional electron system biased in the presence of a lateral potential barrier under magnetic field is theoretically studied. The quantum tunneling across the barrier provides the quantum interference of the edge states localized on its both sides that results in giant oscillations of the charge current flowing perpendicular to the lateral junction. Our theoretical analysis is in a good agreement with the experimental observations presented in Ref.8. In particular, positions of the conductance maxima coincide with the Landau levels while the conductance itself is essentially suppressed even at the energies at which the resonant tunneling occurs and hence these puzzling observations can be resolved without taking into account the electron-electron interaction.Comment: 6 pages, 4 figure

    Kinematic power corrections in off-forward hard reactions

    Full text link
    We develop a general approach to the calculation of kinematic corrections ~t/Q^2, ~m^2/Q^2 in hard processes which involve momentum transfer from the initial to the final hadron state. As the principal result, the complete expression is derived for the time-ordered product of two electromagnetic currents that includes all kinematic corrections to twist-four accuracy. The results are immediately applicable e.g. to the studies of deeply-virtual Compton scattering.Comment: 4 page

    Effect of point-contact transparency on coherent mixing of Josephson and transport supercurrents

    Full text link
    The influence of electron reflection on dc Josephson effect in a ballistic point contact with transport current in the banks is considered theoretically. The effect of finite transparency on the vortex-like currents near the contact and at the phase difference ϕ=π,\phi =\pi , which has been predicted recently \cite{KOSh}, is investigated. We show that at low temperatures even a small reflection on the contact destroys the mentioned vortex-like current states, which can be restored by increasing of the temperature.Comment: 6 pages, 8 Figures, Latex Fil
    corecore