199 research outputs found
Serpulid microbialitic bioherms from the upper Sarmatian (Middle Miocene) of the central Paratethys Sea (NW Hungary) – witnesses of a microbial sea
We present previously unknown stacked bowl-shaped bioherms reaching a size of 45 cm in diameter and 40 cm in height from weakly solidified peloidal sand from the upper Sarmatian of the Paratethys Sea. The bioherms were mostly embedded in sediment, and the “growth stages” reflect a reaction on sediment accretion and sinking into the soft sediment. The bioherms are spirorbid–microclot–acicular cement boundstones with densely packed Janua tubes surrounded by microclots and acicular cement solidifying the bioherm. The surrounding sediment is a thrombolite made of peloids and polylobate particles (mesoclots) which are solidified synsedimentarily by micrite cement and dog-tooth cement in a later stage. The shape of the bioherms reflects a series of growth stages with an initial stage (“start-up stage”) followed by a more massive “keep-up stage” which grades into a structure with a collar-like outer rim and a central protrusion and finally by a termination of growth (“give-up stage”). The setting was a shallow subtidal environment with normal marine or elevated saline, probably oligotrophic, conditions with an elevated alkalinity. The stacked bowl-shaped microbialites are a unique feature that has so far been undescribed. Modern and Neogene microbialite occurrences are not direct analogues to the described structures, but the marine examples, like in The Bahamas, Shark Bay and the Persian Gulf, offer insight into their microbial composition and environmental parameters.
The microbialites and the surrounding sediment document a predominance of microbial activity in the shallow marine environments of the Paratethys Sea during the late Middle Miocene, which was characterized by a warm, arid climate.</p
Revision of the Cretaceous shark Protoxynotus (Chondrichthyes, Squaliformes) and early evolution of somniosid sharks
Due to the peculiar combination of dental features characteristic for different squaliform families, the position of the Late Cretaceous genera Protoxynotus and Paraphorosoides within Squaliformes has long been controversial. In this study, we revise these genera based on previously known fossil teeth and new dental material. The phylogenetic placement of Protoxynotus and Paraphorosoides among other extant and extinct squaliforms is discussed based on morphological characters combined with DNA sequence data of extant species. Our results suggest that Protoxynotus and Paraphorosoides should be included in the Somniosidae and that Paraphorosoides is a junior synonym of Protoxynotus. New dental material from the Campanian of Germany and the Maastrichtian of Austria enabled the description of a new species Protoxynotus mayrmelnhofi sp. nov. In addition, the evolution and origin of the characteristic squaliform tooth morphology are discussed, indicating that the elongated lower jaw teeth with erected cusp and distinct dignathic heterodonty of Protoxynotus represents a novel functional adaptation in its cutting-clutching type dentition among early squaliform sharks. Furthermore, the depositional environment of the tooth bearing horizons allows for an interpretation of the preferred habitat of this extinct dogfish shark, which exclusively occupied shelf environments of the Boreal- and northern Tethyan realms during the Late Cretaceous.publishedVersio
Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia)
a b s t r a c t a r t i c l e i n f o In the Miocene, the intra-montane basins of the Dinaric Mountain Chain harbored a series of long-lived lakes constituting the so-called Dinaride Lake System. The thick lacustrine sedimentary records of these lakes provide an excellent opportunity to study evolution and radiation of mollusks in an isolated environment. The 500 m thick infill that accumulated in the Sinj Basin is one of the key records because of its excellent mollusk preservation. Recent studies on the depositional history, pollen assemblages and large mammals have enhanced the understanding not only of Lake Sinj, but also of the regional climatic developments and faunal migratory patterns. A reliable chronology of the development of Lake Sinj, which is crucial for global correlation of its endemic realm, was still lacking. In this paper we present a detailed time-frame for the Miocene Sinj basin based on palaeomagnetic and 40 Ar/ 39 Ar data. We conclude that deposition took place between 18.0 to 15.0 Ma, a time span that correlates with the upper Burdigalian and lower Langhian Mediterranean stages and Ottnangian, Karpatian and lowermost Badenian Paratethys stages. Furthermore, we determined the timing of several events in mollusk evolution, important for correlation across the Dinarides. An age of 15.0 Ma is attributed to the large mammals Conohyus and Gomphotherium, preserved in the upper part of the basin stratigraphy
Mediterranean biodiversity gradient initiated by basin restriction
Physical connectivity between marine basins facilitates population exchange and hence controls biodiversity. The Mediterranean Sea is a semi-restricted basin with only a small two-way connection to the global ocean, and it is a region heavily impacted by climate change and biological invasions today. The massive migration of non-indigenous species into the basin through the Suez Canal, driven and enabled by climate warming, is drastically changing Mediterranean biodiversity. Understanding therefore the origin and cause(s) of pre-existing biodiversity patterns is crucial for predicting future impacts of climate change. Mediterranean biodiversity exhibits a west-to-east decreasing gradient in terms of species richness, but the processes that resulted in this gradient have only been hypothesized. By examining the fossil record, we provide evidence that this gradient developed 5.33 million years ago at the end of the Messinian Salinity Crisis, and it was therefore caused by the re-population of the basin by marine species with a dominating western source at the MediterraneanÂżAtlantic gateway
The marine biodiversity impact of the Late Miocene Mediterranean salinity crisis
Massive salt accumulations, or salt giants, have formed in highly restricted marine basins throughout geological history, but their impact on biodiversity has been only patchily studied. The salt giant in the Mediterranean Sea formed as a result of the restriction of its gateway to the Atlantic during the Messinian Salinity Crisis (MSC) 5.97 to 5.33 million years ago. Here, we quantify the biodiversity changes associated with the MSC based on a compilation of the Mediterranean fossil record. We conclude that 86 endemic species of the 2006 pre-MSC marine species survived the crisis, and that the present eastward-decreasing richness gradient in the Mediterranean was established after the MSC.Massive salt accumulations, or salt giants, have formed in highly restricted marine basins throughout geological history, but their impact on biodiversity has been only patchily studied. The salt giant in the Mediterranean Sea formed as a result of the restriction of its gateway to the Atlantic during the Messinian Salinity Crisis (MSC) 5.97 to 5.33 million years ago. Here, we quantify the biodiversity changes associated with the MSC based on a compilation of the Mediterranean fossil record. We conclude that 86 endemic species of the 2006 pre-MSC marine species survived the crisis, and that the present eastward-decreasing richness gradient in the Mediterranean was established after the MSC
- …