99 research outputs found
Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae.
The full activity of a recombination initiation site located 5' of HIS4 requires the binding of the transcription factors RAP1, BAS1, and BAS2. Two RAP1 binding sites can substitute for the wild-type initiation site. A 51-bp region of telomeric DNA inserted upstream of either HIS4 or ARG4 very strongly stimulates recombination. We suggest that the ability of transcription factors to induce recombination is a consequence of an altered chromatin structure that favors the entry of proteins that initiate recombination, rather than an effect of these factors on transcription
Nonrandom Distribution of Interhomolog Recombination Events Induced by Breakage of a Dicentric Chromosome in Saccharomyces cerevisiae
Dicentric chromosomes undergo breakage in mitosis, resulting in chromosome deletions, duplications, and translocations. In this study, we map chromosome break sites of dicentrics in Saccharomyces cerevisiae by a mitotic recombination assay. The assay uses a diploid strain in which one homolog has a conditional centromere in addition to a wild-type centromere, and the other homolog has only the wild-type centromere; the conditional centromere is inactive when cells are grown in galactose and is activated when the cells are switched to glucose. In addition, the two homologs are distinguishable by multiple single-nucleotide polymorphisms (SNPs). Under conditions in which the conditional centromere is activated, the functionally dicentric chromosome undergoes double-stranded DNA breaks (DSBs) that can be repaired by mitotic recombination with the homolog. Such recombination events often lead to loss of heterozygosity (LOH) of SNPs that are centromere distal to the crossover. Using a PCR-based assay, we determined the position of LOH in multiple independent recombination events to a resolution of ∼4 kb. This analysis shows that dicentric chromosomes have recombination breakpoints that are broadly distributed between the two centromeres, although there is a clustering of breakpoints within 10 kb of the conditional centromere
The fidelity of DNA replication, particularly on GC-rich templates, is reduced by defects of the Fe-S cluster in DNA polymerase δ
Iron-sulfur clusters (4Fe-4S) exist in many enzymes concerned with DNA replication and repair. The contribution of these clusters to enzymatic activity is not fully understood. We identified the MET18 (MMS19) gene of Saccharomyces cerevisiae as a strong mutator on GC-rich genes. Met18p is required for the efficient insertion of iron-sulfur clusters into various proteins. met18 mutants have an elevated rate of deletions between short flanking repeats, consistent with increased DNA polymerase slippage. This phenotype is very similar to that observed in mutants of POL3 (encoding the catalytic subunit of Pol δ) that weaken binding of the iron-sulfur cluster. Comparable mutants of POL2 (Pol ϵ) do not elevate deletions. Further support for the conclusion that met18 strains result in impaired DNA synthesis by Pol δ are the observations that Pol δ isolated from met18 strains has less bound iron and is less processive in vitro than the wild-type holoenzyme
Stealth monoolein-based nanocarriers for delivery of siRNA to cancer cells
While the delivery of small interfering RNAs (siRNAs) is an attractive strategy to treat several clinical con- ditions, siRNA-nanocarriers stability after intravenous administration is still a major obstacle for the development of RNA-interference based therapies. But, although the need for stability is well recognized, the notion that strong stabilization can decrease nanocarriers efficiency is sometimes neglected. In this work we evaluated two stealth functionalization strategies to stabilize the previously validated dioctade- cyldimethylammonium bromide (DODAB):monoolein (MO) siRNA-lipoplexes. The nanocarriers were pre- and post-pegylated, forming vectors with different stabilities in biological fluids. The stealth nanocarriers behavior was tested under biological mimetic conditions, as the production of stable siRNA-lipoplexes is determinant to achieve efficient intravenous siRNA delivery to cancer cells. Upon incubation in human serum for 2 h, by fluorescence Single Particle Tracking microscopy, PEG-coated lipo- plexes were found to have better colloidal stability as they could maintain a relatively stable size. In addi- tion, using fluorescence fluctuation spectroscopy, post-pegylation also proved to avoid siRNA dissociation from the nanocarriers in human serum. Concomitantly it was found that PEG-coated lipoplexes improved cellular uptake and transfection efficiency in H1299 cells, and had the ability to silence BCR-ABL, affecting the survival of K562 cells.
Based on an efficient cellular internalization, good silencing effect, good siRNA retention and good col- loidal stability in human serum, DODAB:MO (2:1) siRNA-lipoplexes coated with PEG-Cer are considered promising nanocarriers for further in vivo validation.
Statement of Significance
This work describes two stealth functionalization strategies for the stabilization of the previously validated dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) siRNA-lipoplexes. These nanocarriers are capable of efficiently incorporating and delivering siRNA molecules to cells in order to silence genes whose expression is implicated in a pathological condition. The main objective was to functionalize these nanocarriers with a coating conferring protection to siRNA in blood without compromising its efficient delivery to cancer cells, validating the potential of DODAB:MO (2:1) siRNA-lipoplexes as therapeutic vec- tors. We show that the stealth strategy is determinant to achieve a stable and efficient nanocarrier, and that DODAB:MO mixtures have a very promising potential for systemic siRNA delivery to leukemic cells.FEDER through POFC-COMPETE
and by national funds from FCT I.P. through the strategic funding
UID/BIA/04050/2013 (CBMA) and PEst-C/FIS/UI0607/2013 (CFUM)
and PTDC/QUI/69795/2006. We thank the support of the Frame
Work Program 7 of the European Commission: BIOCAPS (316265,
FP7/REGPOT) and Xunta de Galicia, Spain (Agrupamento
INBIOMED, Grupo con potencial crecimiento) reference IF/00498/2012, scholarship SFRH/BD/68588/2010. NanoDelivery-I&D em
Bionanotecnologia, Lda. for access to their equipment
Dioctadecyldimethylammonium:monoolein nanocarriers for efficient in vitro gene silencing
This study describes a novel liposomal formulation for siRNA delivery, based on the mixture of the neutral lipid monoolein (MO) and cationic lipids of the dioctadecyldimethylammonium (DODA) family. The cationic lipids dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) were compared in order to identify which one will most efficiently induce gene silencing. MO has a fluidizing effect on DODAC and DODAB liposomes, although it was more homogeneously distributed in DODAC bilayers. All MO-based liposomal formulations were able to efficiently encapsulate siRNA. Stable lipoplexes of small size (100-160 nm) with a positive surface charge (>+45 mV) were formed. A more uniform MO incorporation in DODAC:MO may explain an increase of the fusogenic potential of these liposomes. The siRNA-lipoplexes were readily internalized by human nonsmall cell lung carcinoma (H1299) cells, in an energy dependent process. DODAB:MO nanocarriers showed a higher internalization efficiency in comparison to DODAC:MO lipoplexes, and were also more efficient in promoting gene silencing. MO had a similar gene silencing ability as the commonly used helper lipid 1,2-dioleyl-3-phosphatidylethanolamine (DOPE), but with much lower cytotoxicity. Taking in consideration all the results presented, DODAB:MO liposomes are the most promising tested formulation for systemic siRNA delivery.This work was supported by FEDER through POFC - COMPETE and by national funds from FCT through the projects PEst-C/BIA/UI4050/2011 (CBM.A), PEst-C/FIS/UI0607/2011 (CFUM), and PTDC/QUI/69795/2006, while Ana Oliveira holds scholarship SFRH/BD/68588/2010. Eloi Feitosa thanks FAPESP (2011/03566-0) and CNPq (303030/2012-7), and Renata D. Adati thanks FAPESP for scholarship (2011/07414-0). K. Raemdonck is a postdoctoral fellow of the Research Foundation - Flanders (FWO-Vlaanderen). We acknowledge NanoDelivery-I&D em Bionanotecnologia, Lda. for access to their equipment
Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells
Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement – a stage between initial cellular internalization and final gene silencing of siRNA delivery systems
A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle
Vasopressin V2R-Targeting Peptide Carrier Mediates siRNA Delivery into Collecting Duct Cells
Internalization of receptor proteins after interacting with specific ligands has been proposed to facilitate siRNA delivery into the target cells via receptor-mediated siRNA transduction. In this study, we demonstrated a novel method of vasopressin V2 receptor (V2R)-mediated siRNA delivery against AQP2 in primary cultured inner medullary collecting duct (IMCD) cells of rat kidney. We synthesized the dDAVP conjugated with nine D-arginines (dDAVP-9r) as a peptide carrier for siRNA delivery. The structure of synthetic peptide carrier showed two regions (i.e., ligand domain to V2R (dDAVP) and siRNA carrying domain (nine D-arginine)) bisected with a spacer of four glycines. The results revealed that 1) synthesized dDAVP-9r peptides formed a stable polyplex with siRNA; 2) siRNA/dDAVP-9r polyplex could bind to the V2R of IMCD cells and induced AQP2 phosphorylation (Ser 256); 3) siRNA/dDAVP-9r polyplex was stable in response to the wide range of different osmolalities, pH levels, or to the RNases; 4) fluorescein-labeled siRNA was delivered into V2R-expressing MDCK and LLC-PK1 cells by siRNA/dDAVP-9r polyplex, but not into the V2R-negative Cos-7 cells; and 5) AQP2-siRNA/dDAVP-9r polyplex effectively delivered siRNA into the IMCD cells, resulting in the significant decrease of protein abundance of AQP2, but not AQP4. Therefore, for the first time to our knowledge, we demonstrated that V2R-mediated siRNA delivery could be exploited to deliver specific siRNA to regulate abnormal expression of target proteins in V2R-expressing kidney cells. The methods could be potentially used in vivo to regulate abnormal expression of proteins associated with disease conditions in the V2R-expressing kidney cells
Friedreich's Ataxia (GAA)n•(TTC)n Repeats Strongly Stimulate Mitotic Crossovers in Saccharomyces cerevisae
Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich's ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast
Recommended from our members
Breaking down the barriers: siRNA delivery and endosome escape
RNA interference (RNAi)-based technologies offer an attractive strategy for the sequence-specific silencing of disease-causing genes. The application of small interfering (si)RNAs as potential therapeutic agents requires safe and effective methods for their delivery to the cytoplasm of the target cells and tissues. Recent studies have shown significant progress in the development of targeting reagents that facilitate the recognition of and siRNA delivery to specific cell types. However, most of these delivery approaches are not optimized to enable the intracellular trafficking of the siRNAs into the cytoplasm where they must associate with the RNA-induced silencing complex (RISC) to direct the cleavage of mRNAs bearing complementary binding sites. In particular, the trafficking of siRNAs from endosomes into the cytoplasm represents a major rate-limiting step for many delivery approaches. This Commentary focuses on novel strategies designed to enhance endosomal escape and thereby increase the efficacy of siRNA-mediated gene silencing
- …