18 research outputs found

    Translational activity of N-methyl-D-aspartate receptor subunit NR1 mRNA in PC12 cells

    No full text
    PC12 cells contain NR1 mRNA but lack significant expression of NR1 protein suggesting translational or post-translational regulation. Translational activity of NR1 mRNA in PC12 cells was examined by sucrose gradient fractionation and by heterologous luciferase NR1 gene expression studies. The cosedimentation and association of NR1 mRNA with large polyribosomes (polysomes) confirmed the translatability of NR1 message in PC12 cells. Possible initiation and/or elongation defects during the translation of NR1 mRNAs were investigated by cyclohexamide treatment. The marked decline in the number of ribosomes associated with NR1 mRNA after prolonged exposure to cyclohexamide suggested that initiation was limiting translation of NR1 mRNA in PC12 cells. Consequently, the effect of the 5' and 3' untranslated regions (UTRs) on translation was examined using fusion constructs consisting of the luciferase coding region fused to either or both the 5' UTR and 3' UTR of NR1. The transfection of PC12 cells with the luciferase NR1-UTR fusion constructs revealed that the 3' UTR of NR1 had a significant inhibitory effect on luciferase expression. In contrast, the 5' UTR of NR1 had no inhibitory effect on mRNA translation in PC12 cells. The results from this study indicate that the translation of NR1 mRNA in PC12 cells may be impeded at initiation and this inhibition may be regulated at least in part through the 3' UTR of NR1. Copyright (C) 2003 S. Karger AG, Basel

    The QoE implications of ultra-high definition video adaptation strategies

    No full text
    As the capabilities of high-end consumer devices increase, streaming and playback of Ultra-High Definition (UHD) is set to become commonplace. The move to these new, higher resolution, video services is one of the main factors contributing to the predicted continuation of growth in video related traffic in the Internet. This massive increases in bandwidth requirement, even when mitigated by the use of new video compression standards such as H.265, will place an ever-increasing burden on network service providers. This will be especially true in mobile environments where users have come to expect ubiquitous access to content. Consequently, delivering UHD and Full UHD (FUHD) video content is one of the key drivers for future Fifth Generation (5G) mobile networks. One often voiced, but as yet unanswered question, is whether users of mobile devices with modest screen sizes (e.g. smartphones or smaller tablet) will actually benefit from consuming the much higher bandwidth required to watch online UHD video, in terms of an improved user experience. In this paper, we use scalable H.265 encoded video streams to conduct a subjective evaluation of the impact on a user’s perception of video quality across a comprehensive range of adaptation strategies, covering each of the three adaptation domains, for UHD and FUHD video. The results of our subjective study provide insightful and useful indications of which methods of adapting UHD and FUHD streams have the least impact on user’s perceived QoE. In particular, it was observed that, in over 70% of cases, users were unable to distinguish between full HD (1080p) and UHD (4K) videos when they were unaware of which version was being shown to them. Our results from this evaluation can be used to provide adaptation rule sets that will facilitate fast, QoE aware in-network adaptation of video streams in support of realtime adaptation objectives. Undoubtedly they will also promote discussion around how network service providers manage their relationships with end users and how service level agreements might be shaped to account for what may be viewed as ‘unproductive’ use of bandwidth to deliver very marginal or imperceptible improvements in viewing experience
    corecore