59 research outputs found

    Разработка метода темплатного синтеза наноструктур в алюмооксидных матрицах

    Get PDF
    Объектом исследования является разработка метода темплатного синтеза наноструктур в алюмооксидных матрицах. Цель работы являются синтез матрицы АОА методом двухступенчатого анодирования и разработка методики темплатного синтеза металлических наноструктур в матрице АОА. Область применения: мембранные технологии, оптика, микроэлектронные устройства, матрицы для темплатного синтеза. В будущем планируется проведение исследования нанокомпозитов на основе кобальта, полученных в матрице АОА, изучение режима формирования наноструктуры и применения таких материалов.The object of research is the development of a template synthesis method for nanostructures in alumina matrices. The aim of the work is the synthesis of the AOA matrix by the method of two-stage anodization and the development of a template synthesis technique for metal nanostructures in the AOA matrix. Scope: membrane technologies, optics, microelectronic devices, matrices for template synthesis. In the future, it is planned to conduct research on cobalt-based nanocomposites obtained in the AOA matrix, to study the regime of nanostructure formation and the use of such materials.In the future, it is planned to conduct research on cobalt-base

    Parasite viability as a measure of in vivo drug activity in preclinical and early clinical antimalarial drug assessment

    Get PDF
    The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.)

    Nonlinear dynamics of semiconductor lasers with active optical feedback

    Get PDF
    An in-depth theoretical as well as experimental analysis of the nonlinear dynamics in semiconductor lasers with active optical feedback is presented. Use of a monolithically integrated multi-section device of sub-mm total length provides access to the short-cavity regime. By introducing an amplifier section as novel feature, phase and strength of the feedback can be separately tuned. In this way, the number of modes involved in the laser action can be adjusted. We predict and observe specific dynamical scenarios. Bifurcations mediate various transitions in the device output, from single-mode steady-state to self-pulsation and between different kinds of self-pulsations, reaching eventually chaotic behavior in the multi-mode limit

    Symmetry breaking in dynamical systems

    Get PDF
    Symmetry breaking bifurcations and dynamical systems have obtained a lot of attention over the last years. This has several reasons: real world applications give rise to systems with symmetry, steady state solutions and periodic orbits may have interesting patterns, symmetry changes the notion of structural stability and introduces degeneracies into the systems as well as geometric simplifications. Therefore symmetric systems are attractive to those who study specific applications as well as to those who are interested in a the abstract theory of dynamical systems. Dynamical systems fall into two classes, those with continuous time and those with discrete time. In this paper we study only the continuous case, although the discrete case is as interesting as the continuous one. Many global results were obtained for the discrete case. Our emphasis are heteroclinic cycles and some mechanisms to create them. We do not pursue the question of stability. Of course many studies have been made to give conditions which imply the existence and stability of such cycles. In contrast to systems without symmetry heteroclinic cycles can be structurally stable in the symmetric case. Sometimes the various solutions on the cycle get mapped onto each other by group elements. Then this cycle will reduce to a homoclinic orbit if we project the equation onto the orbit space. Therefore techniques to study homoclinic bifurcations become available. In recent years some efforts have been made to understand the behaviour of dynamical systems near points where the symmetry of the system was perturbed by outside influences. This can lead to very complicated dynamical behaviour, as was pointed out by several authors. We will discuss some of the technical difficulties which arise in these problems. Then we will review some recent results on a geometric approach to this problem near steady state bifurcation points

    New developments in anti-malarial target candidate and product profiles

    Full text link

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Statistical analysis of electronic and phononic transport simulations of metallic atomic contacts

    Get PDF
    We adapt existing phonon heat transport methods to compute the phononic thermal conductance of metallic atomic contacts during a stretching process. Nonequilibrium molecular dynamics (NEMD) simulations are used to generate atomic configurations and to simultaneously determine the phononic thermal conductance. Combining the approach with established electronic structure calculations based on a tight-binding parameterization allows us to calculate in addition charge transport properties of each contact geometry within the Landauer-B\"uttiker formalism. The method is computationally fast enough to perform a statistical analysis of many stretching events, and we apply it here to atomic junctions formed from three different metals, namely gold (Au), platinum (Pt) and aluminum (Al). The description of both phononic and electronic contributions to heat transport allows us to examine the validity of the Wiedemann-Franz law at the atomic scale. We find that it is well obeyed in the contact regime at room temperature for Au and Al as far as only electronic contributions are concerned, but deviations of up to 10% arise for Pt. If the total thermal conductance is studied, deviations of typically less than 10% arise for Au and Al, which can be traced back mainly to phononic contributions to the thermal conductance, while electronic and phononic contributions can add up to some 20% for single-atom contacts of Pt.publishe
    corecore