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Abstract

An in-depth theoretical as well as experimental analysis of the nonlinear dy-

namics in semiconductor lasers with active optical feedback is presented. Use of a

monolithically integrated multi-section device of sub-mm total length provides ac-

cess to the short-cavity regime. By introducing an ampli�er section as novel feature,

phase and strength of the feedback can be separately tuned. In this way, the num-

ber of modes involved in the laser action can be adjusted. We predict and observe

speci�c dynamical scenarios. Bifurcations mediate various transitions in the device

output, from single-mode steady-state to self-pulsation and between di�erent kinds

of self-pulsations, reaching eventually chaotic behavior in the multi-mode limit.

1 Introduction

Semiconductor lasers with optical feedback are both of fundamental and practical impor-

tance. In a general sense, these lasers belong to the class of delay systems, extensively

studied in many di�erent areas. The non-local time evolution caused by the feedback

creates - in combination with the nonlinearity of the laser - new dynamical regimes. Phe-

nomena like low- and high-frequency oscillations, coherence collapse [1], excitability [2, 3]

and other e�ects have recently been predicted and experimentally observed. Potential ap-

plications are high-speed data transmission [4], cryptography [5], etc. However, practical

devices require proper control of the complexity and, associated with this, a systematic

understanding of the various nonlinear dynamical scenarios. The subject of this paper

is a novel laser structure, where the feedback is ampli�ed by using an active medium in

the external cavity. We will demonstrate that this active feedback laser (AFL) exhibits

various advantages as it allows to tune the feedback level and, in this way, to adjust the

system close to a desired bifurcation point.

Optical feedback is usually achieved by combining the laser with an external mirror. The

characteristic parameters are (i) the delay time � through the round trip in the external

cavity, (ii) the intensity fraction K
2 that re-enters the laser and (iii) the phase � of the

feedback �eld. The solitary laser is supposed to run in a single-mode continuous-wave

(cw) regime. The behavior in presence of feedback crucially depends on the number

of modes that are of relevance in the compound device. This number grows when the

feedback strength K increases. A second factor arises through the time-scales involved.

Photon life-times in typical semiconductor lasers are �p � 1-10 ps, while the period of

the relaxation oscillations �R ranges between 0.1 and 1 ns. In the long-cavity limit,

addressed in most previous studies, � is much longer than �R. The solitary mode is hence

transformed in a quasi-continuous spectrum of external cavity modes, even for modest K.
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The consequence is an irregular dynamical response with stochastic power dropouts. A

recent study on shorter cavities (�/�R � 1) has yielded qualitatively di�erent behavior

[6, 7]. Here, the feedback phase begins to inuence the �eld-inversion dynamics in the

laser. Regular pulse packages have been observed that originate from a global trajectory

along a limited number of modes in the phase-inversion space.

Distributed feedback (DFB) structures, where laser and external cavity are monolithically

integrated in a single device, enable one to access the limit of very short cavities. Here,

the length of both laser and feedback section is in the 100-�m range resulting in �/�R
� 0.01. In this situation, distinct beating phenomena, associated with mode{anti-mode

pairs, are expected [8]. However, their occurrence requires suÆciently strong feedback. In

external-mirror arrangements K is restricted to levels of about 0.1. In order to overcome

this limitation, we have developed a new device [9] schematically depicted in Fig. 1.

It combines a DFB laser with an active feedback cavity (AFC). For separate control of

feedback phase and amplitude, the AFC comprises a phase tuning as well as an ampli�er

section, both independently biased. Current injection in the phase tuning section with

larger band gap modi�es the refractive index by free-carrier transitions. The ampli�er

section is similarly designed as the laser, omitting however the DFB grating and leaving

the end facet uncoated for mirror action. With the AFC, the feedback strength K can be

tuned in a range between 10�2 and nearly 1.

The paper is organized as follows. In the �rst part, we present a theoretical analysis

of the AFL. After introduction of the traveling wave equations and the relevant device

parameters, the optical mode spectrum at di�erent feedback levels is investigated. A

subsequent full numerical solution reveals the characteristic dynamical regimes of the

AFL. Based on the fact that only one or two modes contribute essentially to the dynamics,

a systematic bifurcation analysis is �nally performed. In the second, experimental part,

we focus mainly on the regions of non-stationary device output. Our �ndings are in

very good qualitative and quantitative agreement with the theoretical predictions. We

observe single-mode pulsations at low feedback as well as mode-beating (MB) pulsations

in the high-feedback range. The highly nonlinear behavior of the AFL is demonstrated by

the occurrence of torus-type oscillations and hysteresis for proper choice of the feedback

parameters.

Figure 1: Schematics of the AFL used in

this study. The combination of separate

phase and ampli�er sections allows for an

independent phase and amplitude control of

the feedback. AR: anti-reection coated, R:

facet power reectivity.

2 Theoretical Analysis

For a number of reasons, the frequently used Lang-Kobayashi mean-�eld equations [10]

do not provide an appropriate description of the AFL. First, feedback cavity and laser
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section have comparable length extensions. Second, representing the focus of our study,

the feedback is not weak and, hence, can not be considered as a small perturbation.

Third, not only the carriers in the laser but also those in the ampli�er interact with

the optical �eld. This produces non-linearities and memory e�ects in the feedback so

that the delay cannot be characterized by a single time constant. All these factors give

rise to a complex spatio-temporal structure across the compound device that have to be

properly addressed. This is achieved by using traveling wave equations, which have been

developed for studying multi-section DFB lasers (see, e.g. [4, 11, 12]). Though their

degree of complexity is high, systematic investigations for a variety of di�erent devices

over the last years enable today a reliable handling, both regarding the relevant physical

processes as well as the relatively large parameter set.

2.1 Traveling Wave Equations

The slowly varying envelopes E�(t; z) of the forward and backward traveling waves obey

the equations  
� i

vg

@

@t
� i

@

@z
+ � � i

�

2

!
E� + �E� = 0; (1)

where vg is the group velocity, � the absorption coeÆcient for parasitic losses, and � the

coupling coeÆcient of the DFB gratings. Boundary conditions are E+(t; 0) = 0 at the

anti-reection coated DFB facet and E�(t; L) =
p
RE+(t; L) at the cleaved facet of the

feedback cavity. The waveguide propagation parameter � is a constant in the passive

phase tuning section. For a length lP , it is given by

� = � �P

2lP
; (2)

where the phase shift �P represents one of the externally controllable bifurcation param-

eters of the AFL dynamics.

In the active sections, � is a function of t and z and contains the following contributions

� = Æ + (i + �H)
g

2
� iD: (3)

Here, Æ is the background wave number measured relative to the Bragg resonance and �H

denotes the linewidth enhancement factor. The peak gain g is a function of the carrier

density N

g =
g
0(N �Ntr)

1 + "S
; S = jE+j2 + jE�j2; (4)

with g
0 as di�erential gain, including the transverse con�nement factor, Ntr as trans-

parency concentration, and " accounting for nonlinear gain saturation. The optical �eld

is normalized so that S represents the local photon density. Dispersive contributions are

taken into consideration by the operator D reading as

DE� =
�g

2
(E� � p�): (5)
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For the polarization p�, a single-oscillator model is used

�i @
@t
p� = �i�(E� � p�) + �!p�; (6)

where �! is the resonance frequency taken relative to the central frequency 2�c=�0 , g� �g

the o�-resonance gain, and � measures the gain bandwidth [12].

The carrier densities N(t; z) in the DFB and ampli�er section are solutions of the rate

equation

@

@t
N = J � r(N)� vg

X
�=�

=m [E�2�E�] : (7)

The terms on the right-hand side are the injection rate J , the spontaneous recombination

r(N) = AN +BN
2 + CN

3 as well as the stimulated emission. Note that neither carrier

di�usion nor forward-backward wave interferences (e.g. � E+�E�) appear. The spatial

period of the latter is shorter by more than an order of magnitude compared to the

di�usion length and thus not transferred to the carrier density. On the other hand, after

having dropped these mixed terms, the stimulated recombination varies on a scale much

longer than the di�usion length, with the consequence that di�usion can be dropped, too.

Longitudinal spatial hole burning (LSHB) associated with long-scale modulations of the

stimulated emission rate is essential for DFB lasers. However, LSHB is counteracted by

current redistribution [13], which we describe by an inhomogeneous injection rate

J(t; z) =
I

e�l
� U

0

F

e�lRs

(N � hNi) (z 2 active section); (8)

where all quantities (I: injection current, l: section length, �: cross section of active zone,

U
0

F
: di�erential Fermi level separation, Rs: series resistivity, hNi: average carrier density

over one section) have to be speci�ed for laser and ampli�er section.

Apart from resonant contributions, current injection modi�es also the background pa-

rameters � and Æ. In this work, we restrict ourself to a �xed bias in the laser section

so that these parameters are not subject to change. Previous investigations [14] have

shown that the loss in the phase section (�P ) is in good approximation a linear function

of the phase shift �P . For the present AFL device, a proper choice is �P = 20 cm�1 +

5 cm�1 � �P=2�. In the ampli�er section, the direct carrier-induced change of the gain

coeÆcient is by far dominant so that we can ignore a modi�cation of the background

losses. However, current heating alters signi�cantly the background detuning. Following

Ref. [14], we take this into account by assuming ÆA = �thIA=lA with the thermal detuning

coeÆcient �th = 40A�1. Table 1 collects the values of device parameters used throughout

this paper. The use of di�erent values will be noted in the text.

A reasonable de�nition of the feedback strength in the AFL is

K =
p
R exp(��PLP + (gA � �A)LA); (9)

where gA is taken at the average density hNAi. The upper limit for K is set by the onset

of gain saturation.
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explanation values unit

DFB P A

� index coupling coe�. 130 0 0 cm�1

l section length 200 350 250 �m

� cross-section of AZ 0.45 0.45 �m2

g
0 e�ective di�. gain 9 9 10�17 cm2

�H Henry factor -5 -5

� internal absorption 25 [20,40] 25 cm�1

Æ static detuning 402.7 [0,160] cm�1

I current injection 70 [0,100] mA

Ntr transp. carrier density 1 1 1018 cm�3

A recombination coe�. 0.3 0.3 109 s�1

B recombination coe�. 1 1 10�10 cm3 s�1

C recombination coe�. 1 1 10�28 cm6 s�1

" nonl. gain comp. 3 3 10�18 cm3

U
0

F di�. Fermi level sep. 1 1 10�19V/cm3

Rs series resistivity 5 5 


�g Lorentzian height 200 0 200 cm�1

� Lorentzian half width 23.84 23.84 rad/ps

�! Lorentzian central f. 2.384 2.384 rad/ps

�0 central wavelength 1540 nm

R power reectivity 0.3

vg group velocity c/3.8

Table 1: Parameter values used for the DFB, phase tuning (P), and ampli�er (A) sections.

2.2 Optical Modes

Mode analysis is a key for understanding the e�ects of feedback on the dynamics of a laser.

The optical modes of the hot compound cavity are de�ned as the set of solutions of an

eigenvalue equation following from Eqs. (1) and (6) when substituting the time derivatives

�i@=@t by the complex algebraic factor 
. For comparing di�erent feedback levels, we

tune hNAi and by this the gain in the ampli�er section like an external parameter, while

the density in the DFB section is kept �xed at the solitary laser level. Real and imaginary

parts of the eigenvalues 
 de�ne wavelength and damping of the modes, respectively. Full

solution of the steady-state carrier density equation is possible but less instructive.

Figure 2a illustrates the change of the mode spectrum under feedback and the role of

ampli�cation. Most dramatic in comparison with the solitary DFB laser is the appearance

of a comb of nearly equidistant compound cavity modes. The 0.4 nm average spacing of

these new modes is consistent with the 800 �m total cavity length and almost independent

of the ampli�er gain. Apparently, a Fabry-Perot(FP)-like cavity is formed by the reecting

ampli�er facet on one side and the DFB grating on the other side. In contrast to their

spacing, the damping of the FP-type modes depends strongly on the feedback strength.

For K = 0:02, corresponding to IA � 0, the decay times are shorter than 5 ps and,

therefore, these modes are not essential for the device dynamics. However, the mode

damping is strongly reduced with increasing ampli�cation. Negative values, as occurring

for the largest feedback in Fig. 2a, are an artefact caused by the constraint of �xed N

in the DFB section. If this constraint is relaxed, N will adjust until the damping of the
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Figure 2: Spectrum of optical modes of an

AFL. a) overview. b) environment of the

lasing mode. Bullets: solitary laser (K=0).

Full symbols: K = 0:02; 0:04; 0:14; and

0:88, calculated under the following " = 0,

no LSHB, feedback phase �xed. Lines: lo-

cations of modes for all possible feedback

phases �. Arrows: direction of increas-

ing �. After one phase period, each mode

replaces its formerly next neighbor on the

same line.

mode with lowest loss reaches the minimum value of zero.

Besides creating additional FP-like modes, the feedback also inuences the lasing mode

as shown in Fig. 2b. For low feedback, this inuence is weak. When tuning the feedback

phase by one period, the lasing mode moves around an ellipse in the damping { wavelength

plane. In parallel, the FP-type modes of much higher damping move along a separate non-

closed line, replacing the formerly next neighbor after one period. Single-mode dynamics

is expected in this regime. With increasing feedback, the ellipse blows up until it touches

the FP-like branch and merges with it. Beyond this ampli�cation, all modes are located

on a single open line, exhibiting a deep valley close to the wavelength of the solitary laser.

When increasing the feedback phase, the modes move from right to left through this valley

and take over lasing as long as they are the one of lowest damping. This repeats with a

period of 2�, always with a new mode. As the new mode moves down, its predecessor

climbs up on the opposite side of the valley. In a certain phase range, both modes have

comparable damping and contribute to the laser dynamics. Stronger ampli�cation makes

the valley less distinct so that even more than two modes come into play. An important

feature of active feedback is therefore the ability to adjust the number of modes involved

in the laser dynamics.

2.3 Full numerical solution

After having gained qualitative insight in the mode spectrum, a full numerical solution of

the traveling wave equations is performed for the AFL device experimentally studied be-

low. External bifurcation parameters are the ampli�er current IA and the phase shift �P
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(Eq. 2) adjusted via the current IP on the passive section. When changing these param-

eters, the laser output undergoes various transitions, from steady-state to self-pulsations,

or between self-pulsations of di�erent frequencies. The numerical results are summarized

in Fig. 3 by a contour plot in the (�P ,IA)-plane, where the grey scale represents the

frequency of the self-pulsations. All calculations were performed for increasing phase di-

rection, i.e. only bifurcations occurring in this direction are accounted for. The behavior

is not fully periodic when tuning �P over several 2�-cycles. Islands of given pulsation

frequency f shift slightly upwards, as the losses in the phase section linearly increase

with �P (c.f. Section A). The tilt of the islands manifests the ampli�er contribution to

the feedback phase. It is negative for low IA, because the growing inversion reduces the

refractive index. At about 50 mA, the inversion saturates and the remaining thermal

e�ects cause a small opposite tilt.

0.04

.

0.55

0.7

.4

K=0.1

0.3

0 1 2 3 4
0

20

40

60

80

100

a
m

p
lif

ie
r

c
u

rr
e

n
t

/
m

A

phase �
P

/ 2�

0.55

0.7

0.55

0.4

0.4
0.4

0.7 0.55

0.7

I

II

III

IV

Figure 3: Calculated areas of self-

pulsations in the plane spanned by the two

parameters �P and IA. The DFB injec-

tion level was �xed to IDFB = 70 mA, the

damping in the phase section is increased

by 5/cm per 2�. White areas correspond

to cw output. Di�erent levels of grey in-

dicate non-stationary output with frequen-

cies f (main peak of power spectrum) in

the following ranges: f < 15 GHz (light),

15 GHz < f < 30 GHz (dark), and f > 30

GHz (black). Dotted lines represent curves

of constant K (averaged over one pulsation

period in the self-pulsation areas).

At least four di�erent dynamical regimes can be recognized. At low currents (IA up to

� 10 mA), small islands of low-frequency self-pulsations appear (regime I). Above a small

gap, regime II starts, characterized by narrow stripes of self-pulsations with distinctly

higher frequencies. For even larger IA, the frequencies increase and the stripes widen.

In regime III, established between about 30 and 80 mA, self-pulsations with frequencies

above 30 GHz �ll nearly the whole phase period. The di�erent periods are separated

by narrow stripes with lower frequencies. At highest ampli�cation levels (regime IV),

low-frequency pulsations dominate again.

The four regimes are closely related to the evolution of the optical mode spectrum sketched

in Fig. 2. We have analyzed this correlation by decomposing the numerically calculated

�elds E�(z; t) into instantaneous modes of the hot compound cavity. In regime I, only one

mode essentially contributes to the pulsating states. A jump to the next FP-type mode

appears in every period at the right-hand edge of the pulsation islands. The old mode

and the new mode coexist in the beating-type pulsations of regime II and in the high-

frequency pulsations of regime III. Each island belongs to a de�nite pair of such master

modes. Di�erent islands correspond to di�erent pairs. More than two modes participate

in the irregular low-frequency pulsations of regime IV as well as in the narrow stripes of
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regime III. Accordingly, the pulsations here are irregular in most points of operation.

The regimes also di�er with respect to the feedback strength. K is mainly determined

by the ampli�er current only in the single-mode regions of cw states or type-I pulsations,

where the lines of constant K in Fig. 3 are nearly horizontal. The lower and upper

boundaries of the single-mode pulsations are roughly given by K = 0:04 and K = 0:1,

respectively. In contrast, the lines of constant K are almost vertical in the MB pulsation

regimes II and III, i.e., K is determined by �P and no longer controlled by the ampli�er

current. This behavior is a natural consequence of the coexistence of two modes. Keeping

both modes simultaneously at threshold requires particular values for the carrier densities

in both DFB and ampli�er section. Thus, both carrier densities are clamped in the

two-mode regime. As a result, the contribution of the ampli�er section to the feedback

strength K becomes independent of the injection level [15]. Of course, the carrier densities

are not constant but oscillate also with the beating frequency. However, the magnitude

of the uctuations around the threshold values is small and it makes sense to consider the

average of K over one pulsation period. The situation changes in regime IV with irregular

multimode pulsations. The slow components of these pulsations are accompanied with

large variations of the carrier densities and, in turn, of K, making an average feedback

strength meaningless here.

The numerical solution demonstrates that the AFL is capable of several dynamical regimes.

However, a systematic understanding requires knowledge of the bifurcation diagram that

underlies these results.

2.4 Bifurcation Analysis

A very eÆcient method for constructing comprehensive bifurcation diagrams is path-

following [16]. Well developed path-following tools are available for ordinary di�erential

equations [17] and, recently, also for delayed di�erential equations [18], but not for the

traveling wave partial di�erential equations. Our subsequent approach is based on expand-

ing the optical �elds in terms of hot cavity modes [19, 20]. Only the two master modes

dominating the dynamics in a given island of self-pulsations are taken into account, as

suggested by the numerical results of the previous section. In addition, we ignore here

LSHB (N = hNi), gain dispersion (�g = 0) as well as non-linear gain saturation (� = 0) in

the active sections. While yielding a less accurate description of the total mode spectrum,

these simpli�cations reproduce the relations between the two closely spaced master modes

suÆciently well and, thus, have only marginal inuence on the dynamics of this subsystem

[21, 20]. As a result, the traveling wave equations (1{7) transform into a �ve-dimensional

system of ordinary di�erential equations for two carrier densities and two complex mode

amplitudes minus one irrelevant phase of the total optical �eld. These equations are now

amenable for standard path-following methods [17].

Figure 4 depicts in the (�P ,IA) parameter plane all bifurcations obtained for cw states

and the most physically relevant bifurcations of self-pulsations.

The current axis is limited to the range where no more than two modes are dominant in
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Figure 4: Bifurcation curves and islands

of stable self-pulsations of the simpli�ed

two-mode model in the parameter plane

(�P ,IA). The shaded islands indicate stable

DQS and MB self-pulsations. Parameter

as in the Table except �g = 0; " = 0; �H =

�4. Furthermore �P is �xed to 20 cm�1,

LSHB and thermal detuning are neglected.

Inset: wavelength of stationary states vs.

phase shift �P schematically illustrating the

double-fold structure above the cusp. The

right-hand scale is the feedback strength K

at the lower Hopf bifurcation.

the numerical solution of the full traveling wave equations. The shaded areas represent the

islands of two di�erent types of stable self-pulsations. The lower one with lighter shading

corresponds to undamped single-mode relaxation oscillations. A typical pulse train, a

projection of the periodic orbit, and a power spectrum of these so-called dispersive Q-

switching (DQS) self-pulsations is shown in the �rst row of Fig. 5. MB self-pulsations

appear in the upper island. An example is illustrated in the second row of Fig. 5. The

two islands are tilted and extend over several phase periods. All these features agree

very well with the corresponding structures in the equivalent part of Fig. 3 and also, as

will be shown below, with the experimental �ndings. The extensions of the islands are

somewhat larger than in the full numerical solution. This is mostly due to neglecting

gain saturation by which the damping of the relaxation oscillations is underestimated.

Recurring islands at higher periods of �P do not occur as only one selected pair of modes

is considered. The good overall agreement of the two-mode approximation with the full

numerical integration regarding the predicted self-pulsation areas makes it meaningful to

examine the bifurcations of the AFL in more detail.

We start our discussion of the bifurcation diagram in Fig. 4 at the cusp point (CU), because

it separates regions with a di�erent number of cw states. The dotted line emanating from

CU, one branch traversing to HSN (Hopf saddle-node), the other to A and B, represents

a saddle-node bifurcation of cw states. At the dotted line, a saddle and a node are

created, i.e., there are three cw states - two nodes and one saddle - between the two

branches and only one cw state outside (cf. schematic inset of Fig. 4). The left branch

of the curve and the right branch up to HSN involve at least one stable cw state. Hence,

these branches represent boundaries of hysteresis regions. The numerical simulations of

paragraph 2.3 were performed for increasing �p, so that only the right branch of the

saddle-node bifurcation was recognized as a mode jump.
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Figure 5: Dynamics in the points la-

beled (a) to (c) of the bifurcation diagram

in Fig. 4. (a) typical low-frequency self-

pulsation, (b) MB self-pulsation, (c) be-

yond the torus-bifurcation. Left column:

output power versus time, middle column:

projection of the phase space trajectory

onto the plane of output power versus DFB

carrier density, right column: power spec-

trum.

The solid line represents a Hopf bifurcation of a cw state. A self-pulsation of small

amplitude is born there. This self-pulsation is stable for the supercritical Hopf bifurcation

above the upper Generalized Hopf (GH) point and below HSN, and unstable for the

subcritical Hopf bifurcation between the two GH points. In the experiment, a supercritical

Hopf bifurcation will not show up as a sharp transition but as a slow rise of a peak at the

Hopf frequency in the power spectrum. Opposed to this, a subcritical Hopf bifurcation is

displayed by a discontinuity and could be the boundary of a hysteresis loop.

The physical mechanism destabilizing the laser mode at the Hopf boundary of the lower

pulsation island is due to DQS, mediated by the gain-index coupling (�H 6= 0). Any uctu-

ation of the DFB inversion is accompanied by a wavelength change which in turn changes

the quality factor of the feedback cavity. DQS has �rst been discussed and exploited in

devices with a highly dispersive Bragg reector in the feedback cavity [22, 23]. It has also

been predicted mathematically for lasers with a simple passive feedback [24]. Our present

results con�rm the conclusion that the intrinsic dispersion of an extended feedback cavity

can be suÆcient to cause DQS self-pulsations without an additional dispersive element.

The Hopf curve and the saddle-node curve touch each other in the point HSN. Above

HSN, the cw state undergoing the bifurcations (both Hopf or saddle-node) is unstable.

Consequently, the bifurcation is not experimentally observable. The corresponding curves

are shown in grey to indicate that they are of less interest.

Another boundary of the DQS self-pulsation area is due to homoclinic bifurcations rep-

resented by the triple-dot-dashed curve in Fig. 4. Here, the self-pulsation touches a cw

saddle state and disappears. When moving across this curve, the frequency of the self-

pulsation becomes smaller until the laser switches suddenly to a stable cw state. This

switching occurs without hysteresis if the homoclinic connection in the phase space is

actually towards a saddle-node, i.e., if the curve of homoclinic bifurcations coincides with

the curve of saddle-nodes between points A and B. In this case, the stable cw state is

excitable. Beyond B, the curve of homoclinics approaches the point HSN in a wiggling

manner.
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Apart from Hopf and homoclinic bifurcations, saddle-nodes of limit cycles (single-dot-

dashed line) and period-doubling bifurcations (dashed line) form the boundary of the

DQS island. Period doubling is only the �rst step in a rapidly accumulating sequence

leading to chaos within the region enclosed by the period doublings. The saddle-node

limit cycle shrinks to zero at the upper GH point changing the Hopf bifurcation from

subcritical to supercritical for increasing �P .

There is not much hysteresis with respect to parameter variation even at the subcritical

Hopf bifurcation boundary of the DQS island between the two GH points. The reason

is the proximity of the Hopf curve to the curves of period doubling and saddle-nodes of

limit cycles.

Our analysis also yields bifurcations that are not physically relevant. The phase-space

trajectories related to some bifurcations leave the range of validity of the mode approx-

imation. Other bifurcations involve unstable cw states or self-pulsations and, hence, are

not experimentally observable. We show those parts in Fig. 4 in grey.

The MB pulsations are born on the Hopf bifurcation curve at higher ampli�er current. A

second mode reaches threshold here, whereas the relaxation oscillations remain strongly

damped. Within the MB island, the power is distributed between the two modes such

that they both keep at threshold. Further boundaries of this island are saddle-nodes of

limit cycles between the GH and PSN as well as period doubling bifurcations between

PSN and 1:2, and torus bifurcations represented by the double-dot-dashed line emerging

from 1:2. Along most parts, the torus bifurcation is supercritical, i.e., a stable torus is

born above this curve. This has been validated by several numerical tests. An example

is drawn in the third row of Fig. 5. Both the fast MB oscillator and the slow relaxation

oscillation are undamped here, giving rise to a modulated pulse train and a complex phase

space picture. A stable torus bifurcation does not manifest itself by a sharp transition in

the experiments, but as a smooth rise of secondary peaks in the power spectrum below

and above the main frequency peak. Close to the strong resonances (1:2, 1:3, 1:4), the

secondary peaks are of low rational order and should be particularly pronounced.

For lasers with passive feedback [25, 24], the island of MB pulsations forms only a narrow

stripe in the parameter space, where the two modes have comparable threshold. Appar-

ently, the region of stable MB pulsations widens substantially with active feedback. Since

the saddle-node bifurcation curve crosses this region, hysteretic behavior is expected in a

large parameter range.

Concluding so far, two basic types of self-sustained intensity pulsations appear in active

feedback lasers: slow relaxation oscillations undamped by DQS and fast MB pulsations

due to the interplay of two compound cavity modes, reaching simultaneously the laser

threshold.
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3 Experiment

3.1 Device

The AFL, sketched in Fig. 1, is realized as an index-coupled multi-section laser. It is

designed for the 1550 nm window in �ber optical communication. The InGaAsP-InP

bulk hetero-structure is grown by low-pressure metal-organic vapor phase epitaxy. A

1550 nm InGaAsP-layer as active zone is embedded in an asymmetric 1180 nm/1300 nm

InGaAsP optical waveguide. Polarisation independence of the optical gain is achieved

by a suitable adjustment of the thickness of the layers and the strain in the active zone.

The DFB grating is fabricated by e-beam lithography and reactive ion-etching [4]. By

adjusting properly the etching depth, a coupling coeÆcient of 130 cm�1 is achieved. The

passive section is implemented as a 1300 nm structure by removing the 1550 nm active

layer.

Figure 6: ASE measured at the ampli-

�er facet with the DFB section pumped at

transparency. The cavity between end-facet

and DFB grating allows for a veri�cation of

the phase shift in the passive section. The

excess loss by free carrier injection causes

the damping of the ASE modulation with

increasing current.

Figure 6 demonstrates how the phase shift can be tuned by changing the bias on the

passive section. The dark lines are the resonances of the ampli�ed spontaneous emission

(ASE) detected at the ampli�er facet, while �xing the DFB current to transparency

level (8.6 mA) and pumping the ampli�er section with 45 mA. This data is used below

to translate the applied phase current Ip into the actual phase shift �P . The observed

ASE resonances correspond to the damped FP-type modes found in the mode analysis

of section 2.2. The 0.42 nm average spacing compares very well with the calculations.

At the stop-band edges, the spacing is reduced due to stronger dispersion of the grating

reectivity. Apart from the refractive index, also the free-carrier absorption is changed

by current injection into the passive section. An evaluation of the ASE modulation depth

gives an excess loss of about 4 cm�1 per phase period in the current range investigated.

3.2 Regions of non-stationary emission

Optical and power spectra of the AFL output were recorded at the ampli�er facet. An op-

tical spectrum analyzer Advantest Q8384A and an electrical spectrum analyzer HP8565E

were used. A fast u2t photo-diode, post-ampli�ed by a HP83050A electrical ampli�er

(50 GHz bandwidth) served as opto-electronic converter. To reduce the parameter space,

the DFB current was �xed to 70 mA (about two times the threshold current of the solitary
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DFB) at a device temperature of 20Æ C. Phase current and ampli�er current were varied

from 0 to 50 mA and from 0 to 100 mA, respectively.
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P

Figure 7: Areas of self-pulsations in the

plane of phase and ampli�er current. DFB

current is �xed at 70 mA. For comparison

with the numerical results, �P is given at

the top axis. The grey scale is the same as

in Fig. 3. Only the frequency component

with highest intensity is indicated. The ver-

tical bars mark regions, where more details

are presented in the subsequent �gures.

Figure 7 summarizes the result of the measurements in a similar contour plot as used

to present the numerical calculations in Fig. 3. In the areas of non-stationary output,

the power spectra exhibit peaks at non-zero frequencies with intensities exceeding the

noise level by more than 10 dB. The very good agreement between theory and experiment

is evident. Deviations are mainly caused by uncertainties concerning the translation of

experimental currents into more fundamental parameters such as feedback strength. The

shift of the whole plot to higher ampli�er currents is mainly attributed to higher losses

in the feedback cavity than used in the numerical solution.

In what follows, we focus more closely on the role of the active feedback by keeping the

phase current �xed (8 mA). The vertical cross-sections marked in Fig. 7 proceed through

regions of low- and high-frequency self-pulsations and contain spectral features that are

representative for the whole parameter plane.

3.3 Undamped DQS relaxation oscillations

Figure 8 depicts spectra typical for the regions of low-frequency self-pulsations. The power

spectrum with a main frequency of 9 GHz and a distinct second harmonic at 18 GHz

compares well with the theoretical spectrum in Fig. 5a. The optical spectrum shows a

splitting of the emission line into several subcomponents with a spacing corresponding

to the 9 GHz pulsation frequency. These features are characteristic for DQS-type self-

pulsations derived theoretically above.

According to the calculated bifurcation diagram (Fig. 4), the main boundaries of the

DQS-pulsation regions are either Hopf or homoclinic bifurcations. In order to verify this

prediction, the ampli�er current was tuned across the island region. The inset in Fig. 8

shows the evolution of height and position of the primary peak of the power spectrum.
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Figure 8: Power (upper panel)

and optical (lower panel) spec-

trum (IDFB=70 mA, IP=8 mA,

IA=9 mA). Inset: evolution of

the primary peak of the power

spectrum with increasing ampli-

�er current IA. Solid line: peak

height, circles: frequency. Note

the log-scale.

The steep but continuous increase of the peak height at about IA=9 mA is consistent

with a supercritical Hopf bifurcation of the relaxation oscillations, which are driven by

spontaneous emission noise. When approaching this bifurcation, the damping of the os-

cillations goes to zero, while the peak increases exponentially. During the bifurcation, the

frequency changes continuously, too. After a slight increase, a distinct slowing-down is

observed, which is accompanied by a further increase of the peak height. Both observa-

tions indicate an expansion of the periodic orbit of the pulsation in the plane of carrier vs.

photon density. In contrast to the smooth onset the pulsations abruptly disappear at the

upper island boundary by a sudden jump to a longer wavelength mode. Such behavior

is consistent with a homoclinic bifurcation above A in Fig. 4. Due to the exponentially

small region of the homoclinic, only a moderate slow-down of the pulsation frequency

towards this bifurcation occurs. Fluctuations, unavoidable in the experiment, prevent a

suÆciently smooth approach to the homoclinic, disabling the observation of f ! 0 .

3.4 Mode beating pulsations

Figure 9 shows the evolution of spectra at higher ampli�er currents. Below IA =47 mA,

the power spectrum consists of a single line at about 30 GHz in good agreement with

the theoretical prediction of stable MB pulsations. Possible higher harmonics are beyond

the bandwidth of the spectrum analyzer. The frequency remains nearly unchanged in the

range of pure MB. This is consistent with the independence of the feedback strength K

on the ampli�er current within the respective MB islands (see Fig. 3).

A typical optical spectrum of a MB pulsation is drawn for IA=40 mA in Fig. 9. Two

central peaks of comparable height are accompanied by one or more pairs of satellites. The
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central peaks represent the coexisting pair of optical modes. Their separation of 0.25 nm

corresponds to the beating frequency of 30 GHz and it is considerably reduced relative to

the 0.4 nm FP-separation. This reduction is due to the mode pulling e�ect at the DFB

resonances already discussed above. The satellites, separated from the main peaks by the

same spacing, are due to non-degenerate four-wave mixing of the two coexisting modes.

The presence of such intense mixing products signi�es a good spatial overlap of the two

modes within the device and high phase stability of the MB pulsations.

Figure 9: Characteristic spec-

tra at high ampli�er currents

(IDFB=70 mA, IP=8 mA). Panel

a: power spectrum for IA from

37 to 51 mA. The logarithmic

grey scale codes the spectral in-

tensity as denoted on the right-

hand side. Panel b: log-scale op-

tical spectra at selected points of

panel a. Pure MB pulsation ap-

pears below IA=47 mA, whereas

the more complex spectral fea-

tures above this ampli�er current

are due to the interaction between

the relaxation oscillations and MB

pulsations.

In accordance with a supercritical Hopf bifurcation the onset of the MB pulsations is

a continuous transition, smoothened by the presence of noise. The optical spectrum at

IA=36 mA shows already the second mode being close to threshold. It is only weakly

damped here and can collect a measurable amount of spontaneous emission. With in-

creasing ampli�er current, this peak rises quickly and approaches the height of the �rst

one at about IA=38 mA.
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3.5 Torus of mode-beating and relaxation oscillations

The scenario at the upper boundary of the MB pulsation region is more complex. A new

low-frequency component emerges at about IA=47 mA in the power spectrum (Fig. 9a)

and coexists with the MB component. It has noticeable higher harmonics and causes

mirror satellites of the MB line indicating a non-linear interaction between both compo-

nents. These phenomena are characteristic attributes of the torus bifurcation predicted

by theory. Again, the transition is continuous indicating supercritical character. Weak

shoulders of the main features, already present in the optical spectra at IA=44 mA, are

precursors of this bifurcation. The shoulders become increasingly prominent and dissolve

in individual sub-lines in the torus region, starting at about IA=48 mA. The frequency

of the emerging new component in the power spectrum is slightly below 10 GHz. This

points at relaxation oscillation as physical origin of the torus. However, contrary to the

standard case, where a cw state is approached, this relaxation leads towards a periodic

orbit formed by the two coexisting dominant modes. Below the torus bifurcation, such

oscillations are excited by internal or external noise, perturbing the power distribution

between the two modes, at which they are both at threshold. Above the torus bifurca-

tion, these distribution oscillations become undamped and create a cyclic variation of the

modulation depth as depicted in the lower left panel of Fig. 5.

The details of the power spectra in the torus region between IA=47 and 50 mA uncover

a sequence of further bifurcations, which were not obtained by the mathematical analysis

of section 2.4. Just above IA=49 mA, the two frequency components synchronize to each

other at a 1:6 ratio within a 300 �A current range. For other phase currents, we could

observe similar synchronized states with di�erent integer frequency ratios. However, a

detailed description and analysis of these phenomena is beyond the scope of this paper.

Above the locking region, an additional broad background band appears. This band is

related to a chaotic component in the AFL dynamics, probably due to participation of a

third mode. It dominates the spectrum until the laser jumps suddenly to a beating state

of the next pair of modes with higher pulsation frequency than in the previous island.

This observation is also consistent with the predictions of Fig. 3. Note that the feedback

strength switches to a higher level when moving vertically from one island to the next

one.

3.6 Hysteresis

Some of the bifurcations elaborated in section 2.4 are associated with hysteresis behavior.

Figure 10 compares optical spectra in the DQS and MB regime for increasing and de-

creasing ampli�er current, respectively. Indeed, both data sets clearly exhibit hysteresis.

In the DQS case, the onset of pulsation in backward direction is shifted with respect to

increasing current by about 1 mA. The presence of hysteresis provides strong evidence

that the AFL operates above point A in Fig. 4, so that the di�erent locations of the

saddle-node bifurcation and homoclinic produce this behavior. Note that the switching

in forward and backward direction occurs at the same feedback strength.
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The MB regime di�ers from these observations mainly in the width of the hysteresis.

While the lower switching point is not a�ected by the direction, the upper current level,

where the pulsations disappear, is shifted by 8 mA. Due to this shift, the torus scenario

observed for increasing ampli�er current direction is entirely absent. The reason is again

a saddle-node bifurcation, which is located below the bifurcation responsible for the torus

pulsations (Fig. 4). The onset of the same MB pair in backward direction at the saddle-

node bifurcation produces a large hysteresis range in IA. A further factor increasing the

hysteresis range, is the slow variation of the feedback strength K in the MB regime, as

seen in Fig. 3.

4 Summary

Using the AFL as a novel device, the non-linear dynamics in the very-short cavity limit

has been studied. Separate control of feedback phase and strength allowed us to adjust

the number of relevant laser modes and to prepare well-de�ned dynamical scenarios. Two

regimes dominate the device behavior. In the low-feedback range (K � 0.1), the dynamics

is governed by a single mode. Instabilities of this mode result in DQS pulsations, without

the need of an additional dispersive element. At higher feedback levels, available through

the introduction of the ampli�er section, distinct MB pulsations originating from a pair

of compound modes occur. Hysteresis due to homoclinic and saddle-node bifurcations

is observed. When the feedback strength is further increased, both types of pulsations

coexist, giving rise to new e�ects, as e.g. internal synchronization. The bifurcation

diagram predicts a broad range of further phenomena typical for the very-short cavity

regime. All these features make the AFL an ideal candidate for the investigation of

systems with delayed optical feedback.
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